VitalGuard: Constraint-Based Ethical Design for Ultra-
Lightweight Offline AI in Humanitarian Contexts

Gyu-min Jeon (Morgan J.)
M-Corp Ethical Al, Hanbat National University, Republic of Korea
contact@mcorpai.org

February 2026

Abstract

Humanitarian Al often assumes connectivity, centralized data, and institutional capacity that
are absent in refugee camps, conflict zones, and high-surveillance environments, where
privacy and liability risks can outweigh potential benefits. We present VitalGuard, an ultra-
lightweight offline Al artefact constrained to 54 kB and implemented in vanilla HTML and
JavaScript with zero external dependencies. VitalGuard is designed to be auditable and non-
extractive: it performs on-device, session-bounded processing without collecting, storing, or
transmitting personal data. Rather than optimizing for benchmark performance, we propose a
constraint-based ethical design approach in which minimalism operates as an accountability
mechanism. We derive ten implementable design principles from GDPR, UNCRC, and
CRPD, and map each principle to concrete architectural constraints. We then formalize key
properties using a description-length proxy for auditability, a privacy-by-non-collection threat
model, and computational complexity bounds for real-time operation on decade-old
smartphones. Preliminary validation includes a multi-week design review by a European
government development agency and exploratory academic discussions with humanitarian
and disability-innovation researchers. We present illustrative use cases for refugee identity
matching and basic health screening, and we candidly discuss technical limits, deployment
barriers, and misuse risks, including surveillance appropriation. VitalGuard is framed as a
research pathway toward verifiable, governance-ready offline Al in vulnerable settings.

Keywords: Offline Al, humanitarian technology, ethical Al, ultra-lightweight systems,
TinyML, privacy-by-design, refugee self-reliance, constraint-based design, GDPR
compliance, surveillance resistance

1. Introduction

The deployment of artificial intelligence in humanitarian contexts has expanded substantially
in recent years, with applications ranging from satellite-based displacement monitoring to
natural language processing for crisis communication [1, 2]. International organisations,
nongovernmental organisations (NGOs), and academic institutions have invested
considerable resources in exploring how machine learning might improve service delivery to
vulnerable populations, including refugees, internally displaced persons, and communities
affected by conflict or natural disaster [3, 4]. Yet a persistent and largely unresolved tension
underlies this expansion: the very populations most in need of technological support are those
least served by the dominant paradigm of cloud-dependent, data-intensive Al [5].

This tension is not merely technical. It is structural. Cloud-based Al systems require reliable
internet connectivity, centralised data storage, and ongoing computational resources—
conditions that are routinely absent in refugee camps, conflict zones, and regions subject to
digital surveillance [6, 7]. More critically, the data collection practices inherent to most
contemporary Al systems create legal and ethical liabilities that many humanitarian
organisations cannot accept. Under the General Data Protection Regulation (GDPR), even
well-intentioned data processing may expose organisations to substantial financial penalties
and reputational damage [8]. In contexts where the populations served are already subject to

surveillance, persecution, or exploitation, the risks are not abstract but immediate and
potentially life-threatening [9, 10].

The consequence is a paradox: the communities with the greatest need for Al-assisted support
are precisely those excluded from its benefits by the architectural assumptions of mainstream
Al development. This exclusion is not a failure of computing power or algorithmic
sophistication. It is a failure of design philosophy. The prevailing approach optimises for
performance on standard benchmarks while treating deployment constraints—connectivity,
privacy, institutional liability—as afterthoughts to be addressed through adaptation rather
than foundational design [11, 12].

This paper proposes an alternative framing. Rather than beginning with the question, “What
can Al do?” and subsequently attempting to retrofit solutions for constrained environments,
we begin with the question, “What may Al ethically be permitted to do in the most vulnerable
settings, and under what institutional conditions?” This inversion of the standard design logic
motivates VitalGuard, an ultra-lightweight offline Al system constrained to 54 kilobytes,
implemented entirely in vanilla HTML and JavaScript, requiring no external libraries, no
server connections, and no data transmission of any kind.

VitalGuard is not an attempt to compete with large-scale Al systems on performance metrics.
It is a deliberate exercise in constraint-based ethical design: the proposition that extreme
minimalism—in file size, in computational requirements, in data handling—can itself
function as a form of accountability [13]. A system that collects no data cannot leak data. A
system that requires no network connection cannot be intercepted. A system that fits within
54 kilobytes can be inspected in its entirety by a single reviewer in a reasonable timeframe.
These are not merely engineering conveniences; they are ethical properties that address the
specific concerns of humanitarian organisations considering technology adoption [14, 15].

The contributions of this paper are as follows. First, we articulate ten principles of ethical Al
design derived from international legal frameworks (GDPR, UNCRC, CRPD) and grounded
in the operational realities of humanitarian deployment. Second, we present the architecture
of VitalGuard, demonstrating how each design principle translates into specific technical
decisions. Third, we provide operational definitions and mathematical framing for
auditability, privacy exposure, and runtime constraints, using description-length proxies, a
privacy-by-non-collection threat model, and computational complexity analysis. Fourth, we
report preliminary validation including a multi-week design review by a European
government agency and early-stage academic discussions with the Institute of Development
Studies (IDS) and UCL Global Disability Innovation Hub. Fifth, and perhaps most
importantly, we present a candid and detailed assessment of limitations, field barriers, and
ethical risks—including the possibility that the system could be misused for surveillance
purposes—as we believe that honest engagement with failure modes is a prerequisite for
responsible innovation in this domain [16, 17].

It is worth noting what this paper does not claim. We do not claim that VitalGuard
outperforms existing Al systems on standard benchmarks—it does not, and by design cannot.
We do not claim that the system is ready for deployment—field validation has not yet
occurred. We do not claim that constraint-based design is universally superior to

performance-optimised approaches—in many contexts, it is not. What we do claim is that for
a specific and important class of deployment scenarios—those characterised by surveillance
risk, infrastructure absence, and institutional liability sensitivity—the design philosophy
presented here may offer a pathway that the dominant paradigm cannot. Whether this claim
withstands empirical scrutiny is a question for future work.

We also wish to acknowledge a structural tension in this work. The system is designed by a
researcher who is not part of the displacement-affected communities for potential deployment
among displaced populations. This power asymmetry cannot be resolved by technical means
alone, and we address it explicitly in our discussion of ethical risks (Section 6). The
aspiration toward community ownership and participatory design is genuine but presently
unrealised; we treat it as a research objective rather than an achieved outcome.

The remainder of this paper is organised as follows. Section 2 reviews related work across ten
domains relevant to ultra-lightweight humanitarian Al. Section 3 presents the design
principles and their implementation. Section 4 provides mathematical formalisation. Section
5 describes the system architecture and preliminary validation. Section 6 addresses
limitations, risks, and ethical concerns. Section 7 concludes with reflections on future
directions.

2. Related Work

The design space addressed by VitalGuard sits at the intersection of several research
traditions that have, until recently, developed largely in isolation. This section reviews ten
domains whose convergence frames the contribution of the present work. Rather than treating
these as independent literatures, we attempt to trace the logical connections between them, as
it is precisely their intersection—ultra-lightweight computation, ethical governance, and
humanitarian deployment—that defines the gap this paper seeks to address.

2.1 TinyML and Edge Al

The TinyML paradigm has demonstrated that meaningful machine learning inference is
feasible on microcontrollers with as little as 256 kilobytes of memory [18, 19]. Warden and
Situnayake (2022) provide a comprehensive treatment of deployment strategies for resource-
constrained devices, while Banbury et al. (2021) establish benchmarking standards through
MLPerf Tiny [20, 21]. More recently, Lin et al. (2024) have shown that on-device training—
not merely inference—can be achieved within severe memory budgets [22]. However, most
TinyML research focuses on sensor data and embedded systems rather than humanitarian
applications, and the ethical dimensions of deployment in vulnerable contexts remain
underexplored.

2.2 Al Ethics and Governance Frameworks

The ethical Al literature has expanded considerably, with Jobin et al. (2019) identifying over
84 guidelines across national and institutional frameworks [23]. Floridi et al. (2022) provide a
philosophical foundation for AI governance that emphasises transparency and accountability
[24]. The European Union’s Al Act (2024) establishes regulatory requirements that directly
affect humanitarian technology deployment [25]. Critically, these frameworks increasingly

recognise that ethical Al is not merely about avoiding harm but about ensuring that
technological benefits reach excluded populations. Yet a gap persists between high-level
principles and operational implementation, particularly in low-resource settings where
compliance mechanisms may be unavailable [26].

2.3 Differential Privacy

Differential privacy (DP), formalised by Dwork and Roth (2014), provides a rigorous
guarantee that the inclusion or exclusion of a single individual’s data does not substantially
change the distribution of a released output. DP has been adopted in large-scale consumer
systems and extended to federated and distributed settings. In humanitarian contexts, DP is
often discussed as a way to reduce the ethical and legal risk of analytics on sensitive
populations, because its assurance is mathematical rather than institutional.

VitalGuard does not claim to implement (epsilon, delta)-differential privacy in its present
form. The system performs local, session-bounded processing and does not publish aggregate
statistics or maintain a learning loop across individuals. Instead, VitalGuard reduces privacy
exposure by avoiding the collection, storage, and transmission of personal data. We include
DP here as a comparative baseline and as a potential extension should future versions require
population-level learning or reporting.

2.4 Kolmogorov Complexity and Information Theory

Kolmogorov complexity provides a formal lens on description length: the complexity of an
object can be characterised as the length of the shortest program that generates it on a
universal machine. While the exact complexity of real software is uncomputable and depends
on the reference machine, the concept offers an intuition for why a small, self-contained
artefact can be audited more reliably than a sprawling system. In this work, we treat the 54
kB constraint not as a proof about Kolmogorov complexity, but as a practical auditable
boundary: a size at which the full behaviour of the system can be inspected end-to-end by a
single reviewer within a bounded time window. Information theory therefore supports the
argument for minimalism as accountability rather than a claim of formal optimality.

2.5 Humanitarian Al and Development Technology

The application of Al in humanitarian settings has been examined by multiple scholars and
institutions. The OCHA Centre for Humanitarian Data (2023) documents both opportunities
and failures in humanitarian data systems [34]. Vinuesa et al. (2020) map AI’s potential
contributions to the Sustainable Development Goals [35], while Madianou (2019) introduces
the concept of “technocolonialism” to describe power asymmetries in humanitarian
technology transfer [36].

More recently, field reports from UNHCR and ICRC highlight the gap between AI’s
theoretical potential and its actual deployment, noting that institutional risk aversion, data
protection concerns, and infrastructure limitations remain the primary barriers to adoption
[37, 38].

2.6 Explainable Al (XAl)

The demand for explainability in Al systems has produced a substantial literature, from
Ribeiro et al.’s LIME (2016) to more recent work on concept-based explanations [39, 40]. In
humanitarian settings, explainability takes on additional urgency: decisions affecting refugee
status, health triage, or resource allocation must be auditable not only by technical reviewers
but by affected communities and their advocates [41]. VitalGuard’s vanilla JavaScript
implementation represents an extreme form of explainability—the entire codebase can be
read and understood without specialised tools—though we acknowledge that code
transparency alone does not guarantee interpretability for non-technical stakeholders.

2.7 Classical Algorithms and Lightweight Computation

Prior to the deep learning era, substantial work established that classical algorithms—
Bayesian classifiers, decision trees, probabilistic matching—can achieve reliable performance
on well-defined tasks with minimal computational overhead [42, 43]. Cormen et al. (2022)
provide canonical complexity analyses that inform our selection of algorithms constrained to
O(n log n) time and O(n) space [44]. This classical foundation is not nostalgic; it is
pragmatic. In settings where every kilobyte matters, algorithmic elegance is not a luxury but a
necessity.

2.8 Digital Sovereignty and Surveillance Resistance

The concept of digital sovereignty has gained prominence in policy discussions, particularly
in the European context [45]. For vulnerable populations, digital sovereignty is not an
abstract governance principle but a survival concern: the ability to control one’s own data
may be the difference between safety and persecution [9, 46]. VitalGuard’s fully offline
architecture is designed to address this concern at the most fundamental level—by ensuring
that no data ever leaves the device on which it is processed.

2.9 International Legal Frameworks

Three international frameworks are particularly relevant to the present work. The GDPR
(2016/2018) establishes stringent data protection requirements that apply regardless of the
data subject’s economic status or geographic location [8]. The UNCRC provides special
protections for children’s data and wellbeing, which are critical in refugee contexts where
minors constitute a disproportionate share of displaced populations [47]. The CRPD
mandates accessibility and non-discrimination in technology design, a requirement that
intersects with VitalGuard’s commitment to operating on low-specification devices [48].

2.10 Offline-First Architecture

The offline-first design paradigm, though primarily associated with progressive web
applications in the commercial sector, has direct applicability to humanitarian deployment
[49, 50]. Recent work on local-first software principles emphasises that systems should
function without network connectivity as the default, rather than the exception [51].
VitalGuard extends this principle to its logical conclusion: the system is not offline-capable
but offline-only, with no network functionality whatsoever. This architectural choice
eliminates an entire category of security and privacy risks, though it introduces constraints on
model updating and synchronisation that are discussed in Section 6.

2.11 Synthesis: The Gap at the Intersection

The ten domains reviewed above share a common observation, though each articulates it
from a different vantage point: existing approaches to Al in humanitarian settings are
structurally misaligned with the contexts in which they are deployed. TinyML research
demonstrates that lightweight computation is feasible but does not address humanitarian
ethics. Al ethics frameworks articulate principles but struggle with operational
implementation in low-resource settings. Differential privacy provides mathematical rigour
but has been applied primarily in commercial contexts. Humanitarian technology research
documents failures and power asymmetries but often lacks concrete technical proposals for
alternative architectures.

The gap that VitalGuard seeks to address sits precisely at the intersection of these domains:
the absence of a system that simultaneously satisfies the computational constraints identified
by TinyML research, the ethical requirements articulated by Al governance frameworks, the
privacy guarantees formalised by differential privacy theory, the deployment realities
documented by humanitarian technology scholars, and the legal obligations imposed by
international regulatory frameworks. This is not a claim that existing work is insufficient—it
is an observation that the convergence of these requirements has not yet been explored as a
unified design problem.

3. Design Principles and Implementation

The design of VitalGuard is governed by ten principles derived from the operational
requirements of humanitarian deployment and the legal frameworks discussed in Section 2.
These principles are not aspirational; each one corresponds to a concrete architectural
constraint that shapes the system’s implementation. We present them here with their technical
operationalisation, followed by mathematical formalisation of key system properties.

3.1 Ten Principles of Ethical Al for Humanitarian Contexts

Principle 1: Minimise hallucinations. Incorrect outputs in sensitive domains—child
protection, healthcare, disaster response—can have immediate and severe consequences.
VitalGuard addresses this by restricting itself to classical probabilistic methods (Bayesian
classifiers, rulebased systems) rather than generative models, and by enforcing mandatory
human review thresholds: any output with confidence below 0.8 triggers automatic deferral to
human judgement.

Principle 2: Ensure transparency. The system is implemented entirely in vanilla HTML and
JavaScript. The complete source code is readable by any developer with basic web
programming knowledge, without requiring specialised machine learning expertise. This
represents a form of radical transparency—the entire system is auditable by inspection—
though we acknowledge that code-level transparency does not automatically translate to
decision-level interpretability for non-technical users.

Principle 3: Guarantee accessibility in low-income settings. Open-source code and
architecture are essential to earning trust in humanitarian contexts. The system requires no

proprietary software, no licensing fees, and no specialised hardware beyond a basic
smartphone or laptop.

Principle 4: Eliminate data exploitation. VitalGuard operates without any data collection or
centralised server infrastructure. All processing occurs locally on the user’s device. No
telemetry, analytics, or usage data is transmitted. This serverless design eliminates the legal
risks associated with data processing agreements and cross-border data transfers under
GDPR.

Principle 5: Operate in low-resource environments. The system is designed to run on
refurbished smartphones and devices powered by portable solar panels. The 54 kB constraint
ensures that the system loads instantaneously even on 2G connections (for initial deployment)
and runs efficiently on hardware with minimal processing power and memory.

Principle 6: Remove legal liability. Even minimal exposure to litigation can make
institutional adoption infeasible in high-risk contexts. VitalGuard is therefore designed to
minimise organisational exposure by ensuring that personal data is not collected, persistently
stored, or transmitted, and by keeping processing ephemeral and user-controlled within a
single session. The system does not claim differential privacy unless an explicit noise
mechanism is added; instead, Section 4 provides a privacy-by-non-collection argument and a
threat model that clarifies what is and is not protected.

Principle 7: Be free of charge and lightweight. Free access enables adoption in communities
with no income. The absence of licensing costs also ensures that international institutions
bear no financial liability for deployment.

Principle 8: Emphasise simplicity and standardisation. Life-saving Al requires reliable
statistics and probabilistic analysis rather than complex reasoning that increases hallucination
risk. VitalGuard uses well-understood classical algorithms whose behaviour is predictable
and whose error modes are well-characterised in the literature.

Principle 9: Be non-specialist friendly. Most NGO personnel are not programmers. The
codebase is designed to be straightforward, extensively commented, and easy to adapt in the
field. Every function includes explanatory documentation accessible to readers with basic
technical literacy.

Principle 10: Collect no data and allow simple deletion. Users must be able to erase the Al
and all associated data at any time. The system stores no persistent data; closing the browser
window eliminates all traces of usage. This ease of deletion means freedom from
responsibility for deploying organisations and safety for users in surveillance-heavy
environments.

3.2 Architectural Implementation
The system architecture follows a four-layer design, with each layer constrained by the
principles described above:

Input Layer. Accepts text-based inputs (names, dates, symptom checklists) through a minimal
HTML interface. Input validation occurs locally with no data persistence. Image and sensor

data, where required, are processed as simplified metadata rather than raw binary, reducing
both computational overhead and privacy exposure.

Processing Layer. Contains the core inference engine, implemented in vanilla JavaScript.
Algorithms include Naive Bayes classifiers for risk stratification, Levenshtein distance
matching for identity verification, and weighted scoring models for triage decisions. All
algorithms operate within O(n log n) time complexity and O(n) space complexity bounds.

Output Layer. Presents results through the HTML interface with explicit confidence
indicators. Outputs below the 0.8 confidence threshold are flagged with mandatory human
review warnings. All output is ephemeral—no results are persisted beyond the active browser
session.

Security Layer. Restricts all sensitive processing to volatile in-memory state and clears state
on session termination. The implementation forbids network calls and persistent storage by
design, reducing remote attack surface and limiting long-lived data exposure. The small
codebase (54 kB) supports complete security audit by a single reviewer within a bounded
time window.

The relationship between these four layers and the ten design principles is not one-to-one but
many-to-many: each principle constrains multiple layers, and each layer embodies multiple
principles. For example, Principle 4 (eliminate data exploitation) constrains the Input Layer
(no persistent storage), the Processing Layer (no telemetry), and the Security Layer (session-
based encryption). Similarly, Principle 2 (ensure transparency) applies across all layers
through the choice of vanilla JavaScript, which renders the entire processing pipeline
readable without decompilation, obfuscation, or specialised tooling.

A critical architectural decision is the constraint-based feature inclusion protocol. For any
proposed feature F, inclusion requires satisfying a conjunctive condition: F is necessary for
the target humanitarian use case AND F can be implemented within the 54 kB boundary
AND F does not violate any of the ten design principles. This triple-filter approach
deliberately privileges exclusion over inclusion. The result is a system that does fewer things
than a conventional Al application but does them within a fully verifiable ethical and legal
framework. We regard this as a feature, not a limitation—though we acknowledge that
reasonable observers may disagree. The fallback mechanism deserves particular attention.
When the system’s confidence in a prediction falls below the 0.8 threshold, control is not
merely flagged but actively transferred to a human decision-maker. This threshold was
selected based on established literature on human-AlI collaboration, which suggests that
below this level, the marginal benefit of algorithmic assistance is outweighed by the risk of
overreliance on uncertain predictions [16]. The threshold is configurable by deploying
organisations, recognising that different operational contexts may justify different
calibrations. However, the existence of a mandatory fallback is not configurable—it is a
structural requirement of the system’s ethical architecture.

Constraint-Based Feature Inclusion and Safety Fallback

Necessary for Fits within
humanitarian use case? ADL(S) = 54 kB?

Proposed feature F

Reject feature Complies with all
(or redesign) 10 design principles?

Implement feature
and document constraints

Defer to Run inference
human on-device

Confidence = threshold? Show output

Mandatory, non-configurable
human-in-the-loop safeguard

Figure 3. Constraint-based feature inclusion protocol and mandatory safety fallback (conceptual).

4. Mathematical Formalisation

This section provides formal mathematical characterisation of three key properties of the
VitalGuard system: size constraint justification through Kolmogorov complexity, privacy
guarantees through differential privacy, and computational efficiency through complexity
analysis.

4.1 Kolmogorov Complexity and the 54 kB Boundary
Let K(x) denote the Kolmogorov complexity of a binary string x, defined as the length of the
shortest program p that produces x on a universal Turing machine U: K(x) = min{ |p| : U(p) =

x } (1)

Kolmogorov complexity is uncomputable in general and depends on the choice of U.
Consequently, we do not claim to measure K(S) for the VitalGuard artefact S. Instead, we
introduce an auditable description-length proxy, ADL(S), defined as the literal encoded size
of the distributed system (including HTML, JavaScript, and CSS). The design constraint
ADL(S) <= 54 kB provides a practical upper bound on description length and serves as an
engineering limit chosen to support end-to-end human audit.

The ethical rationale is operational: a system that can be fully read, executed, and reasoned
about within a bounded time window is harder to hide behind opacity. Following the intuition
of software comprehension metrics (e.g., Halstead-style token counts), a 54 kB vanilla
JavaScript artefact typically corresponds to a few thousand meaningful tokens. This places
the full codebase within a range that a skilled reviewer can realistically inspect in a working
day, including the inspection of network calls, storage operations, and algorithmic pathways.

Auditable Description-Length Proxy (ADL) Boundary

Distributed nackage- single HTMI file (HTMI 4+ CSS 4 lavaScrint)
ADL(S) = 54 kB

Input handling Processing Output Session security
(validation, UI) (lightweight logic) (confidence + warning) (ephemeral state)

Design intent: the complete behaviour is inspectable end-to-end within a bounded review window

Figure 2. The 54 kB auditable description-length boundary as a practical review envelope (conceptual).

We also define an information density ratio rho as: rho(S) = H(functionality) / ADL(S) (2)
where H(functionality) is an informal measure of the diversity of functional outputs
supported by the system. VitalGuard seeks a high rho by restricting functionality to compact
classical algorithms and deterministic rules rather than parameter-heavy neural architectures.
The purpose of this section is therefore not to claim theoretical optimality, but to justify a
reviewable size boundary as a first-class ethical constraint.

4.2 Privacy-by-Non-Collection and Session Ephemerality

Differential privacy (DP) provides a noise-based statistical guarantee that limits how much
information about any one individual can be inferred from released outputs. A randomised
mechanism M satisfies (epsilon, delta)-differential privacy if, for all datasets D1 and D2 that
differ in at most one element, and for all measurable sets S: PrlM(D1) in S] <= exp(epsilon) *
Pr{M(D2) in S] + delta (3)

VitalGuard does not claim to implement (epsilon, delta)-differential privacy in its current
form, because it does not add an explicit noise mechanism and it does not operate a
population-level learning or reporting loop. Instead, VitalGuard reduces privacy exposure
through a different design axis: it aims to avoid the creation of long-lived data custody by
prohibiting persistent collection and by keeping processing local to the user device.

We formalise this stance as two implementable constraints. First, the no-persistent-retention
constraint: session data are represented as in-memory variables only and are not written to
persistent stores such as localStorage, IndexedDB, cookies, or file-system APIs. Let Mem(t)
denote volatile memory state during the session and Persist denote the set of all persistent
storage locations accessible to the runtime. Then the intended invariant is: For all t in [t_start,
t_end], Write(Mem(t), Persist) = false. (4) Second, the no-exfiltration constraint: the runtime
contains no outbound network calls (for example fetch, XMLHttpRequest, WebSocket, or
beacon APIs). Let NetCalls denote the set of outbound network invocations. Then: NetCalls
= emptyset. (5)

Under a threat model where the device and browser environment are not already
compromised, these constraints substantially reduce the risk of remote mass-surveillance,
because there is no server-side repository to seize, leak, or subpoena. However, these are not
absolute privacy guarantees: an attacker with local device access, malware-level compromise,
or screen-capture capability can still observe user inputs and outputs. We therefore treat
privacy as a bounded, threat-model-dependent property rather than an unconditional proof.

For future extensions that require aggregated reporting or model updates, DP remains
relevant. In that case, local DP or federated DP could be integrated as an explicit mechanism,
and only then would DP parameters (epsilon, delta) become meaningful claims for
VitalGuard.

4.3 Computational Complexity Bounds and Performance Targets

VitalGuard relies on classical algorithms with transparent computational complexity. Two
representative components are (i) naive Bayes classification for lightweight decision support
and (ii) Levenshtein-distance matching for identity string comparison. For naive Bayes
classification with N samples and F features, training complexity is O(NF) and inference is
O(F). For Levenshtein distance between strings of length m and n, standard dynamic
programming yields O(mn) time and O(mn) space, with well-known optimisations to
O(min(m,n)) space when needed. These bounds provide predictability on low-resource
devices. Rather than asserting a universal runtime such as "100 ms on baseline hardware"
without a reproducible measurement context, we define performance as a design target: for
typical humanitarian inputs (short text fields, small feature vectors, and limited vocabulary),
the system is designed to remain interactive on commodity low-end smartphones. Appendix
A provides a concrete benchmarking protocol that fixes device class, browser engine, input
sizes, and measurement method so that future evaluations can report defensible numbers.
Finally, we discuss GDPR exposure. The GDPR definition of "processing" is broad and
includes operations performed on personal data even when the data never leaves the device.
VitalGuard therefore does not "avoid processing entirely"; rather, it avoids persistent
collection and organisational custody. The design goal is to minimise institutional liability by
ensuring that the deploying organisation does not receive, store, or transmit personal data
through VitalGuard, and by making the processing path fully inspectable.

4.4 Threat Model and Auditable Security Invariants
Because VitalGuard is intended for adversarial environments, security claims must be explicit
about assumptions. We consider two primary adversary classes.

A remote adversary can observe network traffic and may control or coerce infrastructure
operators, but does not have direct control of the user device. In this setting, the no-
exfiltration constraint (Section 4.2) is the key protective measure.

A local adversary can obtain temporary or permanent access to the user device, including
through malware, device seizure, or coercion. In this setting, VitalGuard cannot guarantee
confidentiality of user inputs or outputs; the system is not a secure enclave and is not
designed to resist device-level compromise.

From these assumptions, we propose four auditable invariants that can be checked directly in
the source code. Invariant I1: no third-party code. The distributed artefact includes no
external libraries, CDNs, remote scripts, or dynamic code loading. Invariant I12: no outbound
network calls. The code contains no calls to fetch, XMLHttpRequest, WebSocket,
sendBeacon, or equivalent APIs. Invariant I3: no persistent writes. The code contains no
writes to localStorage, IndexedDB, cookies, service worker caches, file system APIs, or other
persistent storage mechanisms. Invariant 14: deterministic algorithmic core. The core decision
logic is inspectable and does not depend on opaque model weights or remote inference. These
invariants do not guarantee perfect safety, but they provide a pragmatic foundation for
independent verification, which is often the limiting factor in humanitarian deployment
decisions.

5. System Description and Preliminary Validation

5.1 Architecture Overview

VitalGuard is implemented as a single HTML file containing embedded CSS styling,
JavaScript inference logic, and a minimal user interface. The system is structured as four
modular components—input handling, algorithmic processing, output presentation, and
session security—each of which can be independently inspected and verified. The modular
design permits field adaptation: individual components can be modified or replaced without
affecting system integrity, provided the interfaces between modules are preserved. The
constraint-based decision framework governs feature inclusion through a two-stage filter: (1)
Is this functionality necessary for the humanitarian use case? (2) Can it be implemented
within the 54 kB boundary while maintaining all ten design principles? Features that pass
both filters are implemented; those that fail either are excluded, regardless of their potential
utility. This approach inverts the standard feature-maximisation logic of commercial software
development, prioritising ethical constraint satisfaction over functional breadth. A fallback
mechanism ensures safety in all operational scenarios: when Al confidence falls below the
defined threshold (0.8), the system immediately defers to human judgement with an explicit
notification. This is not a graceful degradation feature but a core safety mechanism—the
system is designed to recognise the boundaries of its own competence.

No network calls, no logging, no persistent storage

Human decision-maker

Mandatory fallback
below confidence threshold

On-device VitalGuard

Local Inputs (single-file offline artefact)

Biographic fields
Symptom checklist
Local reference list

(optional)

Input handling
Processing (lightweight logic)
Output + confidence
Session security

Local outputs

Risk category
Ranked matches
Operational guidance

AN\

Figure 1. VitalGuard high-level architecture: offline, on-device processing with mandatory human fallback and no
network dependence.

5.2 Preliminary Design Review: European Government Agency Review

In 2025, VitalGuard underwent a three-week design review conducted by a European
government development agency. The review examined (i) technical feasibility (whether the
54 kB constraint, offline operation, and dependency-free build were genuine and verifiable),
(ii) ethical alignment (whether the stated design principles were reflected in the
implementation), and (iii) policy compatibility (whether an offline-first, non-custodial
approach could plausibly fit within public sector development programming).

The outcome requires careful characterisation. The review affirmed that core design claims
such as offline operation and the absence of server-side data custody were technically
checkable within the scope of the assessment. It also raised practical questions about
deployment pathways, governance, and field validation, noting that formal public-sector
adoption depends on institutional mandate, budgeting, and political timing beyond the scope
of an engineering review.

For this paper, the value of the review is limited and specific. It does not constitute
endorsement, certification, or approval. Its relevance is that an external public institution
considered the design serious enough to review and did not identify immediate disqualifying
contradictions between the stated ethical framing and the observable system constraints. We
report it as an input to credibility, not as an argument for authority.

5.3 Academic Engagement

At the time of writing, exploratory academic discussions are underway with researchers at
two institutions. At the Institute of Development Studies (IDS), University of Sussex, initial
conversations with researchers working on Al ethics in development contexts and refugee
selfreliance have explored potential alignment between VitalGuard’s design philosophy and
IDS’s research agenda. At the UCL Global Disability Innovation (GDI) Hub, discussions
have centred on the compatibility between VitalGuard’s constraint-based approach and
existing ethics-bydesign frameworks for humanitarian technology. These discussions are at

an early stage, and we report them here with appropriate caution. No formal collaboration
agreements have been established. The outcome of these conversations may range from
productive research partnerships to a determination that the approach requires fundamental
revision, or that collaboration is not appropriate at this time. We include this information to
provide context for the system’s current developmental trajectory, not to claim institutional
validation that has not yet been granted.

5.4 lllustrative Use Cases

Use Case 1: Refugee Identity Matching. The system accepts basic biographical information
(name, date of birth, language spoken) and performs local normalisation followed by
approximate string matching against a locally stored reference database. The matching
algorithm employs Levenshtein distance with phonetic normalisation to accommodate
transliteration variations common in refugee documentation. Output consists of ranked
candidate matches with explicit confidence scores. Where confidence falls below 0.8, the
system displays a prominent warning requiring human adjudication. This use case
demonstrates that meaningful identity verification functionality can operate within the 54 kB
constraint, though with the important caveat that the system supplements rather than replaces
existing UNHCR identification processes. Use Case 2: Basic Health Screening. The system
presents a structured symptom checklist and applies a Naive Bayes classifier to produce a
three-level risk categorisation (Low, Medium, High) with a recommendation for specialist
referral where indicated. This is explicitly a screening tool, not a diagnostic instrument. The
distinction is both technical and legal: screening identifies individuals who may benefit from
further assessment, while diagnosis assigns a specific medical condition. VitalGuard
performs only the former, thereby avoiding the legal liability associated with medical device
classification in most jurisdictions. These use cases are illustrative rather than evaluated.
They demonstrate that the 54 kB constraint admits functionality of potential humanitarian
value, but they do not constitute evidence of real-world effectiveness. Field validation—with
actual refugee populations, in actual camp conditions, under actual operational pressures—is
a prerequisite for any claim of utility, and such validation has not yet occurred. We present
these cases to make the system’s intended application concrete, while emphasising that the
distance between technical demonstration and field deployment is substantial and should not
be underestimated. A further consideration concerns the relationship between VitalGuard and
existing humanitarian technology infrastructure. The system is not intended to replace
established tools such as UNHCR’s PRIMES registration system or WHO’s DHIS2 health
information platform. Rather, it is designed to operate in the gaps—contexts where
connectivity is absent, where existing systems cannot function, or where populations are
excluded from institutional services entirely. The complementary rather than competitive
positioning is important: VitalGuard may be most valuable precisely where no other digital
tool is available, and least relevant where established infrastructure is functioning normally. It
is also worth acknowledging the role of the European government design review in the
context of the broader international development ecosystem. In this ecosystem, institutional
decision-making is characterised by path dependence, risk aversion, and peer referencing.
The fact that a European government agency engaged in substantive review of the system’s
design—examining technical claims, ethical architecture, and policy alignment over a three-

week period—does not constitute an endorsement. However, it does represent the passage of
an implicit credibility threshold: the technology was deemed sufficiently serious to warrant
institutional attention. In an ecosystem where the primary barrier to adoption is often not
technical inadequacy but institutional uncertainty, this signal has practical significance,
though it should not be overstated.

5.5 Reproducibility and Validation Checklist

VitalGuard is intentionally designed to be inspectable without specialised tooling. A minimal
reproducibility package should allow an independent reviewer to verify the core constraints
claimed in this paper.

First, size verification. The distributed artefact should be measured as the literal sum of the
offline files (HTML, JavaScript, CSS) required to run the system without a network
connection. Reporting should clarify whether the measurement is raw file size, compressed
archive size, or packaged application size, as these numbers can differ materially.

Second, offline verification. The system should be launched with network connectivity
disabled (for example, airplane mode or a controlled firewall rule) to confirm that all
functionality described as "offline" remains available and that no requests are attempted.

Third, no-exfiltration verification. The source code can be audited by searching for outbound
network APIs such as fetch, XMLHttpRequest, WebSocket, and sendBeacon, and by
observing the browser network panel to confirm no outbound requests are made during
typical usage.

Fourth, no-persistent-retention verification. The source code can be audited for writes to
persistent storage APIs including localStorage, sessionStorage, IndexedDB, cookies, service
worker caches, and file system APIs. Reviewers can also monitor storage panels during
runtime to confirm that sensitive inputs do not persist beyond the session.

Fifth, algorithmic transparency. For each decision-support feature, the paper should specify
the exact algorithmic pathway and parameter choices so that outputs can be reproduced
deterministically under the same inputs.

Finally, performance reporting should be treated as empirical rather than asserted. Appendix
A defines a timing protocol and representative input sizes. At the time of writing, field
deployment remains pending, and claims should be read as design constraints and intended
verification steps rather than proof of real-world impact.

6. Limitations, Risks, and Ethical Considerations

This section constitutes what we regard as the most important part of the paper. A system
designed for deployment in humanitarian contexts—where decisions affect the safety and
wellbeing of vulnerable populations—must be assessed not by what it can do, but by what it
cannot do and what might go wrong. We organise this assessment into four categories:
technical limitations, field deployment barriers, ethical risks, and future research directions.

6.1 Technical Limitations

VitalGuard’s 54 kB constraint, while ethically motivated, imposes genuine and non-trivial
functional restrictions. First, the system cannot perform complex medical diagnosis. The
Naive Bayes classifier used for health screening is suitable for triage—identifying individuals
who should be referred for professional assessment—but lacks the sophistication required for
differential diagnosis. Any attempt to extend the system into diagnostic territory would be
both technically inadequate and ethically irresponsible, as it would expose deploying
organisations to medical liability without providing commensurate clinical benefit. Second,
real-time image processing is beyond the system’s capacity. The 54 kB constraint precludes
the inclusion of image decoding libraries; where visual information is relevant, the system
can process only pre-extracted metadata (e.g., EXIF data, image dimensions) rather than
pixel-level content. This limitation is significant for applications such as document
verification, where image analysis might otherwise improve accuracy. Third, the system
includes no generative Al capabilities. This is a deliberate exclusion rather than a technical
shortcoming: generative models introduce hallucination risks that are unacceptable in
humanitarian decision-making contexts. A system that fabricates plausible but false
information about a refugee’s identity or medical condition could cause direct and
measurable harm. Fourth, model updates require manual file replacement. The system has no
mechanism for over-the-air updates, versioning, or automatic patching. This is a direct
consequence of the offline-only architecture. While it eliminates the security risks associated
with update mechanisms (a common attack vector), it creates a maintenance burden: field
staff must physically deliver updated files, introducing delay and logistical complexity.

6.2 Field Deployment Barriers

Technology adoption in humanitarian settings is constrained less by technical capability than
by institutional, social, and political factors. Three barriers merit specific attention.
Institutional legal conservatism presents the most formidable obstacle. Even when a
technology demonstrably works and is demonstrably safe, humanitarian organisations may
decline to adopt it because the perceived risk of being the first adopter outweighs the
expected benefit. This is a rational response to an asymmetric incentive structure: the
institutional cost of a technology failure (reputational damage, regulatory sanction, litigation)
far exceeds the institutional reward of a technology success (incremental improvement in
service delivery). Addressing this barrier requires not better technology but better risk-
sharing mechanisms—for example, pilot programmes in which legal liability is jointly
designed between the technology provider and the deploying institution. Staff technology
acceptance is a second, related challenge. Many humanitarian field workers operate in
environments where digital technology is unreliable or has previously been associated with
surveillance and control. Building trust in a new technological tool requires sustained
engagement, training, and—critically—evidence that the tool has been co-designed with
input from the communities it is intended to serve. VitalGuard’s deployment strategy must
include participatory design processes rather than simply delivering a finished product. Data
localisation and contextual adaptation present a third barrier. Algorithms trained or
configured for one refugee population may perform poorly when applied to another.
Linguistic patterns, naming conventions, health profiles, and cultural contexts vary

substantially across displacement situations. VitalGuard’s modular architecture is designed to
facilitate local adaptation, but the adaptation process itself requires technical capacity that
may not be available in all deployment settings.

6.3 Ethical Risks and Potential for Misuse

We identify four categories of ethical risk that must be confronted directly. Surveillance
appropriation. Although VitalGuard is designed as a surveillance-resistant technology, the
environment in which it is deployed may not share this property. A camp administrator,
government agency, or armed group could potentially repurpose the system’s identity
matching functionality for monitoring or control purposes. The technical architecture resists
this—no data is transmitted, no logs are kept—but the social context of deployment can
undermine technical safeguards. Mitigation requires mandatory institutional ethical review
prior to any deployment, with veto authority granted to community representatives.
Developer bias. Even a system implemented in transparent vanilla JavaScript embodies the
biases of its designers. Algorithm selection, feature weighting, threshold calibration, and
interface design all reflect the worldview and assumptions of the development team. If that
team lacks diversity—in geography, culture, gender, disability status, or lived experience of
displacement—the system will inevitably encode blind spots that may disadvantage specific
populations. Open-source publication is a necessary but insufficient mitigation; active
community oversight and ongoing audit by affected populations are essential. The illusion of
technological self-reliance. There is a risk that the simplicity and offline capability of
VitalGuard may encourage the misconception that technology alone can solve humanitarian
challenges. A 54 kB file does not constitute self-reliance. Effective deployment requires
training infrastructure, maintenance capacity, legal support, ethical oversight, and—most
fundamentally—institutional commitment to the welfare of the populations served.
Technology is a component of a support ecosystem, not a substitute for one. Asymmetric
design authority. VitalGuard is currently authored outside the displacement-affected
communities it aims to serve. The risk of imposing externally designed systems on
communities without meaningful agency in the design process is real and cannot be fully
mitigated by good intentions alone. The project’s long-term trajectory must include a transfer
of design authority through partnerships with local technical actors and community
governance structures. This transfer is aspirational at present and represents a research
challenge as much as a technical one.

A further ethical consideration concerns the epistemological assumptions embedded in the
system’s design. The ten principles presented in Section 3, while grounded in international
legal frameworks, reflect a particular normative tradition—one rooted in Western liberal
conceptions of privacy, autonomy, and individual rights. In some deployment contexts,
community-level decision-making, collective data governance, or alternative conceptions of
privacy may be more appropriate. The system’s framework should therefore be understood as
a starting point for dialogue with affected communities rather than a universally applicable
template. Future iterations must incorporate mechanisms for community-level ethical review
that go beyond Western institutional ethics protocols.

Finally, we note the paradox of transparency itself. VitalGuard’s small codebase is fully
auditable, which we present as a feature. Yet auditability presumes auditors: individuals with
both the technical competence and the institutional authority to conduct meaningful review.
In many humanitarian settings, such auditors may not be available, and the theoretical
transparency of the system may not translate into practical accountability. Addressing this
gap requires investment in local technical capacity—an investment that goes well beyond the
scope of any single technology project.

6.4 Future Research Directions

Four directions for future work emerge from the analysis above. First, a controlled pilot
deployment of 3—6 months in an actual refugee setting, conducted in partnership with
academic institutions and humanitarian organisations, is essential to test the system’s
assumptions against field reality. Second, the development of a community self-reliance
model—a structured pathway for transferring technical ownership from external developers
to local communities—requires interdisciplinary research combining technology transfer
theory, participatory design, and development studies. Third, the system’s applicability
beyond refugee contexts—to human rights activists, journalists, persons with disabilities, and
other populations operating under surveillance—warrants systematic exploration. Fourth,
policy engagement with international organisations (United Nations agencies, the
International Committee of the Red Cross, the World Health Organisation) is needed to
assess whether and how constraint-based Al design might be incorporated into institutional
technology adoption frameworks.

6.5 Operational Security and Deployment Guidance

VitalGuard should be treated as decision support rather than a substitute for medical, legal, or
protection expertise. In particular, outputs that relate to identity matching, health triage, or
risk scoring can create harm if interpreted as authoritative.

From an operational security perspective, the strongest protection offered by VitalGuard is
the absence of server-side custody. This reduces mass-surveillance and bulk compromise
risk, but it does not protect against device seizure, malware, coercion, or screen capture.
Deployments in high-risk settings should therefore assume that local compromise is possible
and should avoid entering data that would be catastrophic if exposed.

Where organisations distribute VitalGuard, the distribution channel itself becomes part of the
threat model. Offline distribution should use integrity-checked media (for example, signed
packages or checksums) to reduce the risk of tampered builds. The codebase should remain
readable and unminified to support inspection by local partners.

Finally, governance should be explicit about responsibility. If an organisation deploys
VitalGuard, it should publish a short, plain-language statement describing what the system
does, what it does not do, and what data is and is not retained. In humanitarian contexts, such
clarity is often as important as technical correctness.

7. Conclusion

This paper has presented VitalGuard, an ultra-lightweight offline AI system constrained to 54
kB, and has argued that constraint-based ethical design is a viable and necessary orientation
for humanitarian Al. In contexts characterised by surveillance risk, resource scarcity, and
acute legal liability, the driving question should not be "What can this system do?" but "What
may it ethically be permitted to do, and under what institutional conditions?"

The ten design principles articulated here are not individually novel; many align with existing
Al ethics guidelines. The distinctive contribution is the attempt to operationalise them
simultaneously within a single auditable artefact, and to show how ethical commitments can
be translated into enforceable architectural constraints. We motivate the 54 kB boundary as
an auditable description-length proxy, and we characterise privacy primarily through non-
collection, non-retention, and no-exfiltration constraints under an explicit threat model.
Where stronger privacy guarantees are required for future extensions, formal mechanisms
such as differential privacy remain relevant, but they are not claimed without explicit
implementation.

The preliminary validation reported here—an external public-sector design review and early-
stage academic engagement—should be interpreted narrowly. It suggests that the design
framing is coherent and that core constraints are technically inspectable, but it does not
substitute for field trials or impact evaluation. Real-world usefulness will depend on
participatory deployment, governance arrangements, distribution channels, and the safety
practices of organisations and communities.

Ultimately, VitalGuard is not a finished solution. It is an exploration pathway that treats
minimalism as accountability and seeks a pragmatic middle ground between high-capability
cloud Al and low-trust toolchains that expose vulnerable populations to extraction. We hope
the work prompts further research into auditable, offline-first, community-sovereign Al
systems that can be responsibly deployed where the stakes are highest.

Acknowledgements

I thank the humanitarian and disability-innovation researchers who provided early-stage,

informal feedback on the problem framing and on the risks of technology deployment in

displacement contexts. Any remaining errors, omissions, or overstatements are solely my
responsibility.

Data and Code Availability

VitalGuard is intended as an auditable software artefact. Public project documentation and
offline demos are hosted at https://mcorpai.org/. A public repository containing the project
site source and accompanying materials is available at
https://github.com/henrymorgan10/mcorpai-org. The specific 54 kB release bundle
referenced in this paper is distributed as a single-file offline artefact; a tamper-evident
checksum and archival copy can be provided upon request to support independent review.

Because this paper does not report empirical user data or field trials, no personal data or
participant datasets are associated with this release.

If future versions incorporate quantitative evaluations or field deployments, the project will
provide a data-governance plan covering informed consent, minimisation, retention, access
control, incident response, and community oversight, consistent with GDPR-aligned
humanitarian data responsibility guidance.

References
[1] Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2015). Processing social media messages in mass
emergency: A survey. ACM Computing Surveys, 47(4), Article 67. https://doi.org/10.1145/2771588

[2] Meier, P. (2015). Digital Humanitarians: How Big Data Is Changing the Face of Humanitarian Response.
Routledge.

[3] UNHCR. (2024). "Innovation and the use of technology in forced displacement contexts." UNHCR
Innovation Report.

[4] Beduschi, A. (2022). "International refugee law, international human rights law, and artificial intelligence."
International Journal of Refugee Law, 34(1), 5-24.

[5] Madianou, M. (2021). "Nonhuman humanitarianism: When Al for good turns out to be harmful."
Information, Communication & Society, 24(6), 850-868.

[6] Jacobsen, K. L. (2023). "The politics of humanitarian technology." Security Dialogue, 54(2), 158-175.

[7] Latonero, M., & Kift, P. (2022). "On digital passages and borders: Refugees and the new infrastructure for
movement and control." Social Media + Society, 8(1), 1-11.

[8] European Parliament. (2016). "General Data Protection Regulation (GDPR)." Regulation (EU) 2016/679.
Official Journal of the European Union.

[9] Access Now. (2021). "Iris scanning of refugees is disproportionate and dangerous —
What’s happening behind IrisGuard’s closed doors?" Access Now (press release).
https://www.accessnow.org/press-release/irisguard-refugees-jordan/

[10] International Committee of the Red Cross (ICRC) & Privacy International. (2018). "The
Humanitarian Metadata Problem: Doing No Harm in the Digital Era." Joint report.
https://privacyinternational.org/report/2509/humanitarian-metadata-problem-doing-no-harm-
digital-era

[11] TomasSev, N., Cornebise, J., Hutter, F., et al. (2020). "AI for social good: Unlocking the opportunity for
positive impact." Nature Communications, 11(1), 2468.

[12] Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2022). "The role and limits of principles in Al
ethics." Al and Ethics, 2(1), 1-12.

[13] Zuboff, S. (2019). "The age of surveillance capitalism." Public Affairs Press.

[14] Eubanks, V. (2021). "Automating inequality: How high-tech tools profile, police, and punish the poor." St.
Martin's Press.

[15] Benjamin, R. (2023). "Race after technology: Abolitionist tools for the new Jim Code." Polity Press.

[16] Raji, I. D., Smart, A., White, R. N., et al. (2020). "Closing the AI accountability gap." Proceedings of ACM
FAccT, 33-44.

[17] Selbst, A. D., Boyd, D., Friedler, S. A., et al. (2019). "Fairness and abstraction in sociotechnical systems."
Proceedings of ACM FAccT, 59-68.

[18] Warden, P., & Situnayake, D. (2022). "TinyML: Machine learning with TensorFlow Lite on Arduino and
ultra- low-power microcontrollers." O'Reilly Media, 2nd edition.

[19] David, R., Duke, J., Jain, A., et al. (2021). "TensorFlow Lite Micro: Embedded machine learning for
TinyML systems." Proceedings of MLSys.

[20] Banbury, C. R., Reddi, V. J., Lam, M., et al. (2021). "Benchmarking TinyML systems: Challenges and
direction." arXiv preprint arXiv:2003.04821v3.

[21] Reddi, V. J., Cheng, C., Kanter, D., et al. (2022). "MLPerf Mobile inference benchmark." Proceedings of
MLSys.

[22] Lin, J., Zhu, L., Chen, W. M., et al. (2024). "On-device training under 256KB memory." Proceedings of
NeurIPS.

[23] Jobin, A., Ienca, M., & Vayena, E. (2019). "The global landscape of Al ethics guidelines." Nature Machine
Intelligence, 1(9), 389-399.

[24] Floridi, L., Cowls, J., Beltrametti, M., et al. (2022). "Al4People: An ethical framework for a good Al
society." Minds and Machines, 28, 689-707.

[25] Regulation (EU) 2024/1689 of the European Parliament and of the Council laying down harmonised rules
on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union, 2024.

[26] Mittelstadt, B. (2019). "Principles alone cannot guarantee ethical AL." Nature Machine Intelligence, 1(11),
501- 507.

[27] Dwork, C., & Roth, A. (2014). "The algorithmic foundations of differential privacy." Foundations and
Trends in Theoretical Computer Science, 9(3-4), 211-407.

[28] Apple Inc. (2023). "Differential privacy technical overview." Apple Machine Learning Research.

[29] Kairouz, P., McMahan, H. B., Avent, B, et al. (2021). "Advances and open problems in federated
learning." Foundations and Trends in Machine Learning, 14(1-2), 1-210.

[30] Abadi, M., Chu, A., Goodfellow, L., et al. (2016). "Deep learning with differential privacy." Proceedings of
ACM CCS, 308-318.

[31] Kolmogorov, A. N. (1965). "Three approaches to the quantitative definition of information." Problems of
Information Transmission, 1(1), 1-7.

[32] Solomonoff, R. J. (1964). "A formal theory of inductive inference." Information and Control, 7(1-2), 1-22,
224- 254,

[33] Li, M., & Vitanyi, P. (2019). "An introduction to Kolmogorov complexity and its applications." Springer,
4th edition.

[34] OCHA Centre for Humanitarian Data. (2023). "The state of open humanitarian data." OCHA Annual
Report.

[35] Vinuesa, R., Azizpour, H., Leite, L, et al. (2020). "The role of artificial intelligence in achieving the
Sustainable Development Goals." Nature Communications, 11(1), 233.

[36] Madianou, M. (2019). "Technocolonialism: Digital innovation and data practices in the humanitarian
response to refugee crises." Social Media + Society, 5(3), 1-13.

[37] UNHCR Innovation Service. (2024). "Technology in forced displacement: A responsible approach."
UNHCR Report.

[38] ICRC. (2023). "Artificial intelligence and machine learning in armed conflict: A human-centred approach."”
ICRC Position Paper.

[39] Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?: Explaining the predictions of
any classifier." Proceedings of ACM KDD, 1135-1144.

[40] Arrieta, A. B., Diaz-Rodriguez, N., Del Ser, J., et al. (2020). "Explainable Artificial Intelligence (XAI):
Concepts, taxonomies, opportunities and challenges." Information Fusion, 58, 82-115.

[41] Gilpin, L. H., Bau, D., Yuan, B. Z., et al. (2023). "Explaining explanations: An overview of interpretability
of machine learning." Proceedings of IEEE DSAA, 80-89.

[42] Bishop, C. M. (2006). "Pattern recognition and machine learning." Springer.

[43] Murphy, K. P. (2022). "Probabilistic machine learning: An introduction." MIT Press.

[44] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). "Introduction to algorithms." MIT Press,
4th edition.

[45] Floridi, L. (2020). "The fight for digital sovereignty." Philosophy & Technology, 33, 369-378.

[46] Couldry, N., & Mejias, U. A. (2019). "The costs of connection: How data is colonizing human life and
appropriating it for capitalism." Stanford University Press.

[47] United Nations. (1989). "Convention on the Rights of the Child (UNCRC)." Treaty Series, 1577, 3.

[48] United Nations. (2006). "Convention on the Rights of Persons with Disabilities (CRPD)." Treaty Series,
2515, 3.

[49] Sauble, D. (2015). "Offline First Web Development: Design and implement a robust
offline app experience using Sencha Touch and PouchDB." Packt Publishing. ISBN 978-1-
78588-566-2.

[50] Kleppmann, M., Wiggins, A., van Hardenberg, P., & McGranaghan, M. (2019). "Local-first software: You
own your data, in spite of the cloud." Proceedings of ACM Onward!, 154-178.

[51] Linklater, G., Marais, C., Herbert, A., & Irwin, B. (2018). Offline-First Design for Fault Tolerant
Applications. SATNAC 2018 Conference Paper. (Full text available via Rhodes University
repository/ResearchGate).

[52] Halstead, M. H. (1977). "Elements of software science." Elsevier.

[53] McCabe, T. J. (1976). "A complexity measure." IEEE Transactions on Software Engineering, SE-2(4), 308-
320.

Appendix A. Benchmarking and Measurement Protocol

This appendix specifies a minimal protocol for reproducible timing and memory
measurements of VitalGuard. The goal is to prevent performance claims from becoming
marketing statements and to enable independent verification.

Device classes. Report results on at least two classes: (i) a low-end Android device with 2—4
GB RAM and a mid-range ARM CPU, and (ii) a commodity laptop with an x86 CPU. Report
operating system version and browser engine (Chromium, WebKit, or Gecko) with exact
version.

Offline condition. Confirm network is disabled during measurement. Record whether airplane
mode, firewall rules, or an isolated LAN was used.

Input sizes. For Levenshtein matching, report timings for name strings of length 10, 20, 40,
and 80 characters. For naive Bayes, report training sizes N = 50, 200, 1,000 and feature
dimensions F = 10, 50, 200. These ranges cover the intended humanitarian "small data"
regime.

Measurement method. Use the browser high-resolution timer (performance.now()) for wall-
clock timing. Run each case for 100 iterations after a warm-up phase of 20 iterations. Report
median, 95th percentile, and maximum.

Memory reporting. Where possible, report peak heap usage using browser performance tools
or OS-level process monitoring. State limitations if the platform does not expose reliable
memory measures.

Reporting template. Each reported metric should include device, OS, browser, input size
parameters, and whether code was minified. If optimisation changes are made (for example
space-optimised Levenshtein), the implementation variant must be identified explicitly.

Appendix B. Algorithmic Specifications and Pseudocode

This appendix summarises the core algorithms used by VitalGuard to support independent re-
implementation.

Naive Bayes (multinomial) for lightweight classification. Inputs are a feature vector x =
(x1,...,xF) and a set of class labels C. Training estimates class priors P(c) and likelihoods P(fi]
c¢) with Laplace smoothing. Inference selects argmax_c log P(c) + sum_i x_i log P(fi|c).

Levenshtein distance for approximate string matching. The standard dynamic programming
matrix D of size (m+1) x (n+1) is initialised with D[i,0]=i and D[0,j]=j. Recurrence:
D[i,j]=min(D[i-1,j]+1, D[i,j-1]+1, D[i-1,j-1]+cost), where cost is 0 if characters match and 1
otherwise.

Simple rule-based scoring. Where VitalGuard uses threshold rules (for example symptom
triage), the exact thresholds and feature definitions should be included in a configuration
block within the source code so that local partners can review and adjust them.

Pseudocode 1. Levenshtein distance.
function levenshtein(a, b):

m = len(a); n = len(b)
create array D of size (m+1) x (n+1)
for i from @ to m: D[i,0] = 1
for j from @ to n: D[O,]j] =]
for i from 1 to m:
for j from 1 to n:
cost = 0 if a[i-1] == b[j-1] else 1
D[i,j] = min(D[i-1,3] + 1,
D[i,j-1] + 1,
D[i-1,j-1] + cost)
return D[m,n]
Pseudocode 2. Multinomial naive Bayes inference.
function predict_nb(x, priors, 1likelihoods):
best_c = None; best_score = -infinity
for each class c:
score = log(priors[c])
for each feature 1i:
score += x[i] * log(likelihoods[c][i])
if score > best_score: best_score = score; best_c = ¢
return best_c

Appendix C. Governance and Deployment Checklist

VitalGuard is designed to minimise harm through technical constraints, but deployment risk
cannot be eliminated by engineering alone. This appendix provides a governance checklist
suitable for NGOs, local partners, and public institutions.

Clarify purpose and boundaries. Publish a plain-language statement of intended use, non-
intended use, and known limitations. Avoid framing the system as medical diagnosis, legal
adjudication, or identity proof.

Consent and agency. Ensure that users understand that the tool runs locally, what inputs are
required, and that they may refuse use without penalty. In humanitarian settings, consent is
often compromised by power asymmetries; this must be acknowledged.

Safeguard against coercion. Establish procedures for responding to requests from authorities
or armed groups that seek to use the tool for surveillance or profiling. The organisation
should have a documented refusal policy.

Integrity of distribution. Distribute verifiable builds, maintain checksums, and document the
provenance of any modified versions. Avoid bundling with third-party analytics or ad
frameworks.

Local adaptation. If local partners adjust thresholds or rules, require documentation of the
change, rationale, and a basic harm review. Transparency is more important than
optimisation.

Accountability. Assign a responsible owner for incident response, feedback intake, and
periodic review. Even a "no data" tool can cause harm through decision influence.

Appendix D. Extended Principle-to-Constraint Mapping

This appendix expands the mapping between ethical principles and concrete constraints to
support reviewers who prefer narrative reasoning over checklists. The mapping is written to
be auditable: each principle is paired with one or more observable implementation constraints
and with an explicit failure mode.

Principle 1, protect dignity and agency, is enforced by keeping the system local, optional, and
non-mandatory. Failure mode: a deployment that makes tool usage a prerequisite for aid
access converts decision support into coercion.

Principle 2, function in infrastructure absence, is enforced by eliminating runtime
dependencies on networks, remote APIs, and third-party libraries. Failure mode: a "mostly
offline"” design that silently fails when connectivity drops can create dangerous false
confidence.

Principle 3, resist surveillance by design, is enforced by no-exfiltration constraints and by
refusing server-side logging. Failure mode: adding analytics, remote debugging, or silent
telemetry—even for benign monitoring—creates a data exhaust that can be repurposed.

Principle 4, be understandable and contestable, is enforced by the auditable boundary and
deterministic algorithmic core. Failure mode: integrating opaque model weights or remote
inference undermines the ability of local partners to challenge outputs.

Principle 5, minimise dependency and lock-in, is enforced by plain web standards (HTML
and JavaScript) and by the absence of proprietary SDKs. Failure mode: depending on a
vendor runtime can transfer governance power away from the community.

Principle 6, minimise legal liability, is enforced by avoiding organisational custody of
personal data and by keeping processing session-bounded. Failure mode: storing identifiers
locally for convenience can still create meaningful harm if devices are seized.

Principle 7, fairness under scarcity, is enforced by restricting features to inputs that are
realistically available and by avoiding proxy variables that encode protected characteristics.
Failure mode: using convenience proxies (for example location, device identifiers, or
language) can reproduce discriminatory patterns.

Principle 8, fail safely, is enforced by conservative defaults and by presenting outputs as
suggestions with uncertainty. Failure mode: presenting scores without context encourages
over-trust.

Principle 9, enable local adaptation, is enforced by keeping thresholds and rule parameters
explicit in code and by encouraging documentation of changes. Failure mode: hidden
parameters and minified code prevent local governance.

Principle 10, be auditable by one person, is enforced by the 54 kB constraint, readable
formatting, and removal of external dependencies. Failure mode: code growth beyond the
audit boundary recreates the opacity of large systems.

Across these principles, the central argument is that ethical claims must be testable.
VitalGuard treats size, offline operation, and the absence of exfiltration and persistence as
verifiable constraints, so that disagreement does not depend on trusting the author’s intent.

	Abstract
	1. Introduction
	2. Related Work
	2.1 TinyML and Edge AI
	2.2 AI Ethics and Governance Frameworks
	2.3 Differential Privacy
	2.4 Kolmogorov Complexity and Information Theory
	2.5 Humanitarian AI and Development Technology
	2.6 Explainable AI (XAI)
	2.7 Classical Algorithms and Lightweight Computation
	2.8 Digital Sovereignty and Surveillance Resistance
	2.9 International Legal Frameworks
	2.10 Offline-First Architecture
	2.11 Synthesis: The Gap at the Intersection

	3. Design Principles and Implementation
	3.1 Ten Principles of Ethical AI for Humanitarian Contexts
	3.2 Architectural Implementation

	4. Mathematical Formalisation
	4.1 Kolmogorov Complexity and the 54 kB Boundary
	4.2 Privacy-by-Non-Collection and Session Ephemerality
	4.3 Computational Complexity Bounds and Performance Targets
	4.4 Threat Model and Auditable Security Invariants

	5. System Description and Preliminary Validation
	5.1 Architecture Overview
	5.2 Preliminary Design Review: European Government Agency Review
	5.3 Academic Engagement
	5.4 Illustrative Use Cases
	5.5 Reproducibility and Validation Checklist

	6. Limitations, Risks, and Ethical Considerations
	6.1 Technical Limitations
	6.2 Field Deployment Barriers
	6.3 Ethical Risks and Potential for Misuse
	6.4 Future Research Directions
	6.5 Operational Security and Deployment Guidance

	7. Conclusion
	Acknowledgements
	Data and Code Availability
	References
	Appendix A. Benchmarking and Measurement Protocol
	Appendix B. Algorithmic Specifications and Pseudocode
	Appendix C. Governance and Deployment Checklist
	Appendix D. Extended Principle-to-Constraint Mapping

