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Abstract
Humanitarian AI often assumes connectivity, centralized data, and institutional capacity that 
are absent in refugee camps, conflict zones, and high-surveillance environments, where 
privacy and liability risks can outweigh potential benefits. We present VitalGuard, an ultra-
lightweight offline AI artefact constrained to 54 kB and implemented in vanilla HTML and 
JavaScript with zero external dependencies. VitalGuard is designed to be auditable and non-
extractive: it performs on-device, session-bounded processing without collecting, storing, or 
transmitting personal data. Rather than optimizing for benchmark performance, we propose a 
constraint-based ethical design approach in which minimalism operates as an accountability 
mechanism. We derive ten implementable design principles from GDPR, UNCRC, and 
CRPD, and map each principle to concrete architectural constraints. We then formalize key 
properties using a description-length proxy for auditability, a privacy-by-non-collection threat 
model, and computational complexity bounds for real-time operation on decade-old 
smartphones. Preliminary validation includes a multi-week design review by a European 
government development agency and exploratory academic discussions with humanitarian 
and disability-innovation researchers. We present illustrative use cases for refugee identity 
matching and basic health screening, and we candidly discuss technical limits, deployment 
barriers, and misuse risks, including surveillance appropriation. VitalGuard is framed as a 
research pathway toward verifiable, governance-ready offline AI in vulnerable settings.

Keywords: Offline AI, humanitarian technology, ethical AI, ultra-lightweight systems, 
TinyML, privacy-by-design, refugee self-reliance, constraint-based design, GDPR 
compliance, surveillance resistance

1. Introduction
The deployment of artificial intelligence in humanitarian contexts has expanded substantially 
in recent years, with applications ranging from satellite-based displacement monitoring to 
natural language processing for crisis communication [1, 2]. International organisations, 
nongovernmental organisations (NGOs), and academic institutions have invested 
considerable resources in exploring how machine learning might improve service delivery to 
vulnerable populations, including refugees, internally displaced persons, and communities 
affected by conflict or natural disaster [3, 4]. Yet a persistent and largely unresolved tension 
underlies this expansion: the very populations most in need of technological support are those 
least served by the dominant paradigm of cloud-dependent, data-intensive AI [5].

This tension is not merely technical. It is structural. Cloud-based AI systems require reliable 
internet connectivity, centralised data storage, and ongoing computational resources—
conditions that are routinely absent in refugee camps, conflict zones, and regions subject to 
digital surveillance [6, 7]. More critically, the data collection practices inherent to most 
contemporary AI systems create legal and ethical liabilities that many humanitarian 
organisations cannot accept. Under the General Data Protection Regulation (GDPR), even 
well-intentioned data processing may expose organisations to substantial financial penalties 
and reputational damage [8]. In contexts where the populations served are already subject to 



surveillance, persecution, or exploitation, the risks are not abstract but immediate and 
potentially life-threatening [9, 10].

The consequence is a paradox: the communities with the greatest need for AI-assisted support 
are precisely those excluded from its benefits by the architectural assumptions of mainstream 
AI development. This exclusion is not a failure of computing power or algorithmic 
sophistication. It is a failure of design philosophy. The prevailing approach optimises for 
performance on standard benchmarks while treating deployment constraints—connectivity, 
privacy, institutional liability—as afterthoughts to be addressed through adaptation rather 
than foundational design [11, 12].

This paper proposes an alternative framing. Rather than beginning with the question, “What 
can AI do?” and subsequently attempting to retrofit solutions for constrained environments, 
we begin with the question, “What may AI ethically be permitted to do in the most vulnerable 
settings, and under what institutional conditions?” This inversion of the standard design logic 
motivates VitalGuard, an ultra-lightweight offline AI system constrained to 54 kilobytes, 
implemented entirely in vanilla HTML and JavaScript, requiring no external libraries, no 
server connections, and no data transmission of any kind.

VitalGuard is not an attempt to compete with large-scale AI systems on performance metrics. 
It is a deliberate exercise in constraint-based ethical design: the proposition that extreme 
minimalism—in file size, in computational requirements, in data handling—can itself 
function as a form of accountability [13]. A system that collects no data cannot leak data. A 
system that requires no network connection cannot be intercepted. A system that fits within 
54 kilobytes can be inspected in its entirety by a single reviewer in a reasonable timeframe. 
These are not merely engineering conveniences; they are ethical properties that address the 
specific concerns of humanitarian organisations considering technology adoption [14, 15].

The contributions of this paper are as follows. First, we articulate ten principles of ethical AI 
design derived from international legal frameworks (GDPR, UNCRC, CRPD) and grounded 
in the operational realities of humanitarian deployment. Second, we present the architecture 
of VitalGuard, demonstrating how each design principle translates into specific technical 
decisions. Third, we provide operational definitions and mathematical framing for 
auditability, privacy exposure, and runtime constraints, using description-length proxies, a 
privacy-by-non-collection threat model, and computational complexity analysis. Fourth, we 
report preliminary validation including a multi-week design review by a European 
government agency and early-stage academic discussions with the Institute of Development 
Studies (IDS) and UCL Global Disability Innovation Hub. Fifth, and perhaps most 
importantly, we present a candid and detailed assessment of limitations, field barriers, and 
ethical risks—including the possibility that the system could be misused for surveillance 
purposes—as we believe that honest engagement with failure modes is a prerequisite for 
responsible innovation in this domain [16, 17].

It is worth noting what this paper does not claim. We do not claim that VitalGuard 
outperforms existing AI systems on standard benchmarks—it does not, and by design cannot. 
We do not claim that the system is ready for deployment—field validation has not yet 
occurred. We do not claim that constraint-based design is universally superior to 



performance-optimised approaches—in many contexts, it is not. What we do claim is that for 
a specific and important class of deployment scenarios—those characterised by surveillance 
risk, infrastructure absence, and institutional liability sensitivity—the design philosophy 
presented here may offer a pathway that the dominant paradigm cannot. Whether this claim 
withstands empirical scrutiny is a question for future work.

We also wish to acknowledge a structural tension in this work. The system is designed by a 
researcher who is not part of the displacement-affected communities for potential deployment 
among displaced populations. This power asymmetry cannot be resolved by technical means 
alone, and we address it explicitly in our discussion of ethical risks (Section 6). The 
aspiration toward community ownership and participatory design is genuine but presently 
unrealised; we treat it as a research objective rather than an achieved outcome.

The remainder of this paper is organised as follows. Section 2 reviews related work across ten 
domains relevant to ultra-lightweight humanitarian AI. Section 3 presents the design 
principles and their implementation. Section 4 provides mathematical formalisation. Section 
5 describes the system architecture and preliminary validation. Section 6 addresses 
limitations, risks, and ethical concerns. Section 7 concludes with reflections on future 
directions.

2. Related Work
The design space addressed by VitalGuard sits at the intersection of several research 
traditions that have, until recently, developed largely in isolation. This section reviews ten 
domains whose convergence frames the contribution of the present work. Rather than treating 
these as independent literatures, we attempt to trace the logical connections between them, as 
it is precisely their intersection—ultra-lightweight computation, ethical governance, and 
humanitarian deployment—that defines the gap this paper seeks to address.

2.1 TinyML and Edge AI
The TinyML paradigm has demonstrated that meaningful machine learning inference is 
feasible on microcontrollers with as little as 256 kilobytes of memory [18, 19]. Warden and 
Situnayake (2022) provide a comprehensive treatment of deployment strategies for resource-
constrained devices, while Banbury et al. (2021) establish benchmarking standards through 
MLPerf Tiny [20, 21]. More recently, Lin et al. (2024) have shown that on-device training—
not merely inference—can be achieved within severe memory budgets [22]. However, most 
TinyML research focuses on sensor data and embedded systems rather than humanitarian 
applications, and the ethical dimensions of deployment in vulnerable contexts remain 
underexplored.

2.2 AI Ethics and Governance Frameworks
The ethical AI literature has expanded considerably, with Jobin et al. (2019) identifying over 
84 guidelines across national and institutional frameworks [23]. Floridi et al. (2022) provide a 
philosophical foundation for AI governance that emphasises transparency and accountability 
[24]. The European Union’s AI Act (2024) establishes regulatory requirements that directly 
affect humanitarian technology deployment [25]. Critically, these frameworks increasingly 



recognise that ethical AI is not merely about avoiding harm but about ensuring that 
technological benefits reach excluded populations. Yet a gap persists between high-level 
principles and operational implementation, particularly in low-resource settings where 
compliance mechanisms may be unavailable [26].

2.3 Differential Privacy
Differential privacy (DP), formalised by Dwork and Roth (2014), provides a rigorous 
guarantee that the inclusion or exclusion of a single individual’s data does not substantially 
change the distribution of a released output. DP has been adopted in large-scale consumer 
systems and extended to federated and distributed settings. In humanitarian contexts, DP is 
often discussed as a way to reduce the ethical and legal risk of analytics on sensitive 
populations, because its assurance is mathematical rather than institutional.

VitalGuard does not claim to implement (epsilon, delta)-differential privacy in its present 
form. The system performs local, session-bounded processing and does not publish aggregate 
statistics or maintain a learning loop across individuals. Instead, VitalGuard reduces privacy 
exposure by avoiding the collection, storage, and transmission of personal data. We include 
DP here as a comparative baseline and as a potential extension should future versions require 
population-level learning or reporting.

2.4 Kolmogorov Complexity and Information Theory
Kolmogorov complexity provides a formal lens on description length: the complexity of an 
object can be characterised as the length of the shortest program that generates it on a 
universal machine. While the exact complexity of real software is uncomputable and depends 
on the reference machine, the concept offers an intuition for why a small, self-contained 
artefact can be audited more reliably than a sprawling system. In this work, we treat the 54 
kB constraint not as a proof about Kolmogorov complexity, but as a practical auditable 
boundary: a size at which the full behaviour of the system can be inspected end-to-end by a 
single reviewer within a bounded time window. Information theory therefore supports the 
argument for minimalism as accountability rather than a claim of formal optimality.

2.5 Humanitarian AI and Development Technology
The application of AI in humanitarian settings has been examined by multiple scholars and 
institutions. The OCHA Centre for Humanitarian Data (2023) documents both opportunities 
and failures in humanitarian data systems [34]. Vinuesa et al. (2020) map AI’s potential 
contributions to the Sustainable Development Goals [35], while Madianou (2019) introduces 
the concept of “technocolonialism” to describe power asymmetries in humanitarian 
technology transfer [36].

More recently, field reports from UNHCR and ICRC highlight the gap between AI’s 
theoretical potential and its actual deployment, noting that institutional risk aversion, data 
protection concerns, and infrastructure limitations remain the primary barriers to adoption 
[37, 38].



2.6 Explainable AI (XAI)
The demand for explainability in AI systems has produced a substantial literature, from 
Ribeiro et al.’s LIME (2016) to more recent work on concept-based explanations [39, 40]. In 
humanitarian settings, explainability takes on additional urgency: decisions affecting refugee 
status, health triage, or resource allocation must be auditable not only by technical reviewers 
but by affected communities and their advocates [41]. VitalGuard’s vanilla JavaScript 
implementation represents an extreme form of explainability—the entire codebase can be 
read and understood without specialised tools—though we acknowledge that code 
transparency alone does not guarantee interpretability for non-technical stakeholders.

2.7 Classical Algorithms and Lightweight Computation
Prior to the deep learning era, substantial work established that classical algorithms—
Bayesian classifiers, decision trees, probabilistic matching—can achieve reliable performance 
on well-defined tasks with minimal computational overhead [42, 43]. Cormen et al. (2022) 
provide canonical complexity analyses that inform our selection of algorithms constrained to 
O(n log n) time and O(n) space [44]. This classical foundation is not nostalgic; it is 
pragmatic. In settings where every kilobyte matters, algorithmic elegance is not a luxury but a 
necessity.

2.8 Digital Sovereignty and Surveillance Resistance
The concept of digital sovereignty has gained prominence in policy discussions, particularly 
in the European context [45]. For vulnerable populations, digital sovereignty is not an 
abstract governance principle but a survival concern: the ability to control one’s own data 
may be the difference between safety and persecution [9, 46]. VitalGuard’s fully offline 
architecture is designed to address this concern at the most fundamental level—by ensuring 
that no data ever leaves the device on which it is processed.

2.9 International Legal Frameworks
Three international frameworks are particularly relevant to the present work. The GDPR 
(2016/2018) establishes stringent data protection requirements that apply regardless of the 
data subject’s economic status or geographic location [8]. The UNCRC provides special 
protections for children’s data and wellbeing, which are critical in refugee contexts where 
minors constitute a disproportionate share of displaced populations [47]. The CRPD 
mandates accessibility and non-discrimination in technology design, a requirement that 
intersects with VitalGuard’s commitment to operating on low-specification devices [48].

2.10 Offline-First Architecture
The offline-first design paradigm, though primarily associated with progressive web 
applications in the commercial sector, has direct applicability to humanitarian deployment 
[49, 50]. Recent work on local-first software principles emphasises that systems should 
function without network connectivity as the default, rather than the exception [51]. 
VitalGuard extends this principle to its logical conclusion: the system is not offline-capable 
but offline-only, with no network functionality whatsoever. This architectural choice 
eliminates an entire category of security and privacy risks, though it introduces constraints on 
model updating and synchronisation that are discussed in Section 6.



2.11 Synthesis: The Gap at the Intersection
The ten domains reviewed above share a common observation, though each articulates it 
from a different vantage point: existing approaches to AI in humanitarian settings are 
structurally misaligned with the contexts in which they are deployed. TinyML research 
demonstrates that lightweight computation is feasible but does not address humanitarian 
ethics. AI ethics frameworks articulate principles but struggle with operational 
implementation in low-resource settings. Differential privacy provides mathematical rigour 
but has been applied primarily in commercial contexts. Humanitarian technology research 
documents failures and power asymmetries but often lacks concrete technical proposals for 
alternative architectures.

The gap that VitalGuard seeks to address sits precisely at the intersection of these domains: 
the absence of a system that simultaneously satisfies the computational constraints identified 
by TinyML research, the ethical requirements articulated by AI governance frameworks, the 
privacy guarantees formalised by differential privacy theory, the deployment realities 
documented by humanitarian technology scholars, and the legal obligations imposed by 
international regulatory frameworks. This is not a claim that existing work is insufficient—it 
is an observation that the convergence of these requirements has not yet been explored as a 
unified design problem.

3. Design Principles and Implementation
The design of VitalGuard is governed by ten principles derived from the operational 
requirements of humanitarian deployment and the legal frameworks discussed in Section 2. 
These principles are not aspirational; each one corresponds to a concrete architectural 
constraint that shapes the system’s implementation. We present them here with their technical 
operationalisation, followed by mathematical formalisation of key system properties.

3.1 Ten Principles of Ethical AI for Humanitarian Contexts
Principle 1: Minimise hallucinations. Incorrect outputs in sensitive domains—child 
protection, healthcare, disaster response—can have immediate and severe consequences. 
VitalGuard addresses this by restricting itself to classical probabilistic methods (Bayesian 
classifiers, rulebased systems) rather than generative models, and by enforcing mandatory 
human review thresholds: any output with confidence below 0.8 triggers automatic deferral to 
human judgement.

Principle 2: Ensure transparency. The system is implemented entirely in vanilla HTML and 
JavaScript. The complete source code is readable by any developer with basic web 
programming knowledge, without requiring specialised machine learning expertise. This 
represents a form of radical transparency—the entire system is auditable by inspection—
though we acknowledge that code-level transparency does not automatically translate to 
decision-level interpretability for non-technical users.

Principle 3: Guarantee accessibility in low-income settings. Open-source code and 
architecture are essential to earning trust in humanitarian contexts. The system requires no 



proprietary software, no licensing fees, and no specialised hardware beyond a basic 
smartphone or laptop.

Principle 4: Eliminate data exploitation. VitalGuard operates without any data collection or 
centralised server infrastructure. All processing occurs locally on the user’s device. No 
telemetry, analytics, or usage data is transmitted. This serverless design eliminates the legal 
risks associated with data processing agreements and cross-border data transfers under 
GDPR.

Principle 5: Operate in low-resource environments. The system is designed to run on 
refurbished smartphones and devices powered by portable solar panels. The 54 kB constraint 
ensures that the system loads instantaneously even on 2G connections (for initial deployment) 
and runs efficiently on hardware with minimal processing power and memory.

Principle 6: Remove legal liability. Even minimal exposure to litigation can make 
institutional adoption infeasible in high-risk contexts. VitalGuard is therefore designed to 
minimise organisational exposure by ensuring that personal data is not collected, persistently 
stored, or transmitted, and by keeping processing ephemeral and user-controlled within a 
single session. The system does not claim differential privacy unless an explicit noise 
mechanism is added; instead, Section 4 provides a privacy-by-non-collection argument and a 
threat model that clarifies what is and is not protected.

Principle 7: Be free of charge and lightweight. Free access enables adoption in communities 
with no income. The absence of licensing costs also ensures that international institutions 
bear no financial liability for deployment.

Principle 8: Emphasise simplicity and standardisation. Life-saving AI requires reliable 
statistics and probabilistic analysis rather than complex reasoning that increases hallucination 
risk. VitalGuard uses well-understood classical algorithms whose behaviour is predictable 
and whose error modes are well-characterised in the literature.

Principle 9: Be non-specialist friendly. Most NGO personnel are not programmers. The 
codebase is designed to be straightforward, extensively commented, and easy to adapt in the 
field. Every function includes explanatory documentation accessible to readers with basic 
technical literacy.

Principle 10: Collect no data and allow simple deletion. Users must be able to erase the AI 
and all associated data at any time. The system stores no persistent data; closing the browser 
window eliminates all traces of usage. This ease of deletion means freedom from 
responsibility for deploying organisations and safety for users in surveillance-heavy 
environments.

3.2 Architectural Implementation
The system architecture follows a four-layer design, with each layer constrained by the 
principles described above:

Input Layer. Accepts text-based inputs (names, dates, symptom checklists) through a minimal 
HTML interface. Input validation occurs locally with no data persistence. Image and sensor 



data, where required, are processed as simplified metadata rather than raw binary, reducing 
both computational overhead and privacy exposure.

Processing Layer. Contains the core inference engine, implemented in vanilla JavaScript. 
Algorithms include Naïve Bayes classifiers for risk stratification, Levenshtein distance 
matching for identity verification, and weighted scoring models for triage decisions. All 
algorithms operate within O(n log n) time complexity and O(n) space complexity bounds.

Output Layer. Presents results through the HTML interface with explicit confidence 
indicators. Outputs below the 0.8 confidence threshold are flagged with mandatory human 
review warnings. All output is ephemeral—no results are persisted beyond the active browser 
session.

Security Layer. Restricts all sensitive processing to volatile in-memory state and clears state 
on session termination. The implementation forbids network calls and persistent storage by 
design, reducing remote attack surface and limiting long-lived data exposure. The small 
codebase (54 kB) supports complete security audit by a single reviewer within a bounded 
time window.

The relationship between these four layers and the ten design principles is not one-to-one but 
many-to-many: each principle constrains multiple layers, and each layer embodies multiple 
principles. For example, Principle 4 (eliminate data exploitation) constrains the Input Layer 
(no persistent storage), the Processing Layer (no telemetry), and the Security Layer (session-
based encryption). Similarly, Principle 2 (ensure transparency) applies across all layers 
through the choice of vanilla JavaScript, which renders the entire processing pipeline 
readable without decompilation, obfuscation, or specialised tooling.

A critical architectural decision is the constraint-based feature inclusion protocol. For any 
proposed feature F, inclusion requires satisfying a conjunctive condition: F is necessary for 
the target humanitarian use case AND F can be implemented within the 54 kB boundary 
AND F does not violate any of the ten design principles. This triple-filter approach 
deliberately privileges exclusion over inclusion. The result is a system that does fewer things 
than a conventional AI application but does them within a fully verifiable ethical and legal 
framework. We regard this as a feature, not a limitation—though we acknowledge that 
reasonable observers may disagree. The fallback mechanism deserves particular attention. 
When the system’s confidence in a prediction falls below the 0.8 threshold, control is not 
merely flagged but actively transferred to a human decision-maker. This threshold was 
selected based on established literature on human-AI collaboration, which suggests that 
below this level, the marginal benefit of algorithmic assistance is outweighed by the risk of 
overreliance on uncertain predictions [16]. The threshold is configurable by deploying 
organisations, recognising that different operational contexts may justify different 
calibrations. However, the existence of a mandatory fallback is not configurable—it is a 
structural requirement of the system’s ethical architecture.



Figure 3. Constraint-based feature inclusion protocol and mandatory safety fallback (conceptual).

4. Mathematical Formalisation
This section provides formal mathematical characterisation of three key properties of the 
VitalGuard system: size constraint justification through Kolmogorov complexity, privacy 
guarantees through differential privacy, and computational efficiency through complexity 
analysis.

4.1 Kolmogorov Complexity and the 54 kB Boundary
Let K(x) denote the Kolmogorov complexity of a binary string x, defined as the length of the 
shortest program p that produces x on a universal Turing machine U: K(x) = min{ |p| : U(p) = 
x } (1)

Kolmogorov complexity is uncomputable in general and depends on the choice of U. 
Consequently, we do not claim to measure K(S) for the VitalGuard artefact S. Instead, we 
introduce an auditable description-length proxy, ADL(S), defined as the literal encoded size 
of the distributed system (including HTML, JavaScript, and CSS). The design constraint 
ADL(S) <= 54 kB provides a practical upper bound on description length and serves as an 
engineering limit chosen to support end-to-end human audit.

The ethical rationale is operational: a system that can be fully read, executed, and reasoned 
about within a bounded time window is harder to hide behind opacity. Following the intuition 
of software comprehension metrics (e.g., Halstead-style token counts), a 54 kB vanilla 
JavaScript artefact typically corresponds to a few thousand meaningful tokens. This places 
the full codebase within a range that a skilled reviewer can realistically inspect in a working 
day, including the inspection of network calls, storage operations, and algorithmic pathways.



Figure 2. The 54 kB auditable description-length boundary as a practical review envelope (conceptual).

We also define an information density ratio rho as: rho(S) = H(functionality) / ADL(S) (2) 
where H(functionality) is an informal measure of the diversity of functional outputs 
supported by the system. VitalGuard seeks a high rho by restricting functionality to compact 
classical algorithms and deterministic rules rather than parameter-heavy neural architectures. 
The purpose of this section is therefore not to claim theoretical optimality, but to justify a 
reviewable size boundary as a first-class ethical constraint.

4.2 Privacy-by-Non-Collection and Session Ephemerality
Differential privacy (DP) provides a noise-based statistical guarantee that limits how much 
information about any one individual can be inferred from released outputs. A randomised 
mechanism M satisfies (epsilon, delta)-differential privacy if, for all datasets D1 and D2 that 
differ in at most one element, and for all measurable sets S: Pr[M(D1) in S] <= exp(epsilon) * 
Pr[M(D2) in S] + delta (3)

VitalGuard does not claim to implement (epsilon, delta)-differential privacy in its current 
form, because it does not add an explicit noise mechanism and it does not operate a 
population-level learning or reporting loop. Instead, VitalGuard reduces privacy exposure 
through a different design axis: it aims to avoid the creation of long-lived data custody by 
prohibiting persistent collection and by keeping processing local to the user device.

We formalise this stance as two implementable constraints. First, the no-persistent-retention 
constraint: session data are represented as in-memory variables only and are not written to 
persistent stores such as localStorage, IndexedDB, cookies, or file-system APIs. Let Mem(t) 
denote volatile memory state during the session and Persist denote the set of all persistent 
storage locations accessible to the runtime. Then the intended invariant is: For all t in [t_start, 
t_end], Write(Mem(t), Persist) = false. (4) Second, the no-exfiltration constraint: the runtime 
contains no outbound network calls (for example fetch, XMLHttpRequest, WebSocket, or 
beacon APIs). Let NetCalls denote the set of outbound network invocations. Then: NetCalls 
= emptyset. (5)



Under a threat model where the device and browser environment are not already 
compromised, these constraints substantially reduce the risk of remote mass-surveillance, 
because there is no server-side repository to seize, leak, or subpoena. However, these are not 
absolute privacy guarantees: an attacker with local device access, malware-level compromise, 
or screen-capture capability can still observe user inputs and outputs. We therefore treat 
privacy as a bounded, threat-model-dependent property rather than an unconditional proof.

For future extensions that require aggregated reporting or model updates, DP remains 
relevant. In that case, local DP or federated DP could be integrated as an explicit mechanism, 
and only then would DP parameters (epsilon, delta) become meaningful claims for 
VitalGuard.

4.3 Computational Complexity Bounds and Performance Targets
VitalGuard relies on classical algorithms with transparent computational complexity. Two 
representative components are (i) naive Bayes classification for lightweight decision support 
and (ii) Levenshtein-distance matching for identity string comparison. For naive Bayes 
classification with N samples and F features, training complexity is O(NF) and inference is 
O(F). For Levenshtein distance between strings of length m and n, standard dynamic 
programming yields O(mn) time and O(mn) space, with well-known optimisations to 
O(min(m,n)) space when needed. These bounds provide predictability on low-resource 
devices. Rather than asserting a universal runtime such as "100 ms on baseline hardware" 
without a reproducible measurement context, we define performance as a design target: for 
typical humanitarian inputs (short text fields, small feature vectors, and limited vocabulary), 
the system is designed to remain interactive on commodity low-end smartphones. Appendix 
A provides a concrete benchmarking protocol that fixes device class, browser engine, input 
sizes, and measurement method so that future evaluations can report defensible numbers. 
Finally, we discuss GDPR exposure. The GDPR definition of "processing" is broad and 
includes operations performed on personal data even when the data never leaves the device. 
VitalGuard therefore does not "avoid processing entirely"; rather, it avoids persistent 
collection and organisational custody. The design goal is to minimise institutional liability by 
ensuring that the deploying organisation does not receive, store, or transmit personal data 
through VitalGuard, and by making the processing path fully inspectable.

4.4 Threat Model and Auditable Security Invariants
Because VitalGuard is intended for adversarial environments, security claims must be explicit 
about assumptions. We consider two primary adversary classes.

A remote adversary can observe network traffic and may control or coerce infrastructure 
operators, but does not have direct control of the user device. In this setting, the no-
exfiltration constraint (Section 4.2) is the key protective measure.

A local adversary can obtain temporary or permanent access to the user device, including 
through malware, device seizure, or coercion. In this setting, VitalGuard cannot guarantee 
confidentiality of user inputs or outputs; the system is not a secure enclave and is not 
designed to resist device-level compromise.



From these assumptions, we propose four auditable invariants that can be checked directly in 
the source code. Invariant I1: no third-party code. The distributed artefact includes no 
external libraries, CDNs, remote scripts, or dynamic code loading. Invariant I2: no outbound 
network calls. The code contains no calls to fetch, XMLHttpRequest, WebSocket, 
sendBeacon, or equivalent APIs. Invariant I3: no persistent writes. The code contains no 
writes to localStorage, IndexedDB, cookies, service worker caches, file system APIs, or other 
persistent storage mechanisms. Invariant I4: deterministic algorithmic core. The core decision 
logic is inspectable and does not depend on opaque model weights or remote inference. These 
invariants do not guarantee perfect safety, but they provide a pragmatic foundation for 
independent verification, which is often the limiting factor in humanitarian deployment 
decisions.

5. System Description and Preliminary Validation

5.1 Architecture Overview
VitalGuard is implemented as a single HTML file containing embedded CSS styling, 
JavaScript inference logic, and a minimal user interface. The system is structured as four 
modular components—input handling, algorithmic processing, output presentation, and 
session security—each of which can be independently inspected and verified. The modular 
design permits field adaptation: individual components can be modified or replaced without 
affecting system integrity, provided the interfaces between modules are preserved. The 
constraint-based decision framework governs feature inclusion through a two-stage filter: (1) 
Is this functionality necessary for the humanitarian use case? (2) Can it be implemented 
within the 54 kB boundary while maintaining all ten design principles? Features that pass 
both filters are implemented; those that fail either are excluded, regardless of their potential 
utility. This approach inverts the standard feature-maximisation logic of commercial software 
development, prioritising ethical constraint satisfaction over functional breadth. A fallback 
mechanism ensures safety in all operational scenarios: when AI confidence falls below the 
defined threshold (0.8), the system immediately defers to human judgement with an explicit 
notification. This is not a graceful degradation feature but a core safety mechanism—the 
system is designed to recognise the boundaries of its own competence.



Figure 1. VitalGuard high-level architecture: offline, on-device processing with mandatory human fallback and no 
network dependence.

5.2 Preliminary Design Review: European Government Agency Review
In 2025, VitalGuard underwent a three-week design review conducted by a European 
government development agency. The review examined (i) technical feasibility (whether the 
54 kB constraint, offline operation, and dependency-free build were genuine and verifiable), 
(ii) ethical alignment (whether the stated design principles were reflected in the 
implementation), and (iii) policy compatibility (whether an offline-first, non-custodial 
approach could plausibly fit within public sector development programming).

The outcome requires careful characterisation. The review affirmed that core design claims 
such as offline operation and the absence of server-side data custody were technically 
checkable within the scope of the assessment. It also raised practical questions about 
deployment pathways, governance, and field validation, noting that formal public-sector 
adoption depends on institutional mandate, budgeting, and political timing beyond the scope 
of an engineering review.

For this paper, the value of the review is limited and specific. It does not constitute 
endorsement, certification, or approval. Its relevance is that an external public institution 
considered the design serious enough to review and did not identify immediate disqualifying 
contradictions between the stated ethical framing and the observable system constraints. We 
report it as an input to credibility, not as an argument for authority.

5.3 Academic Engagement
At the time of writing, exploratory academic discussions are underway with researchers at 
two institutions. At the Institute of Development Studies (IDS), University of Sussex, initial 
conversations with researchers working on AI ethics in development contexts and refugee 
selfreliance have explored potential alignment between VitalGuard’s design philosophy and 
IDS’s research agenda. At the UCL Global Disability Innovation (GDI) Hub, discussions 
have centred on the compatibility between VitalGuard’s constraint-based approach and 
existing ethics-bydesign frameworks for humanitarian technology. These discussions are at 



an early stage, and we report them here with appropriate caution. No formal collaboration 
agreements have been established. The outcome of these conversations may range from 
productive research partnerships to a determination that the approach requires fundamental 
revision, or that collaboration is not appropriate at this time. We include this information to 
provide context for the system’s current developmental trajectory, not to claim institutional 
validation that has not yet been granted.

5.4 Illustrative Use Cases
Use Case 1: Refugee Identity Matching. The system accepts basic biographical information 
(name, date of birth, language spoken) and performs local normalisation followed by 
approximate string matching against a locally stored reference database. The matching 
algorithm employs Levenshtein distance with phonetic normalisation to accommodate 
transliteration variations common in refugee documentation. Output consists of ranked 
candidate matches with explicit confidence scores. Where confidence falls below 0.8, the 
system displays a prominent warning requiring human adjudication. This use case 
demonstrates that meaningful identity verification functionality can operate within the 54 kB 
constraint, though with the important caveat that the system supplements rather than replaces 
existing UNHCR identification processes. Use Case 2: Basic Health Screening. The system 
presents a structured symptom checklist and applies a Naïve Bayes classifier to produce a 
three-level risk categorisation (Low, Medium, High) with a recommendation for specialist 
referral where indicated. This is explicitly a screening tool, not a diagnostic instrument. The 
distinction is both technical and legal: screening identifies individuals who may benefit from 
further assessment, while diagnosis assigns a specific medical condition. VitalGuard 
performs only the former, thereby avoiding the legal liability associated with medical device 
classification in most jurisdictions. These use cases are illustrative rather than evaluated. 
They demonstrate that the 54 kB constraint admits functionality of potential humanitarian 
value, but they do not constitute evidence of real-world effectiveness. Field validation—with 
actual refugee populations, in actual camp conditions, under actual operational pressures—is 
a prerequisite for any claim of utility, and such validation has not yet occurred. We present 
these cases to make the system’s intended application concrete, while emphasising that the 
distance between technical demonstration and field deployment is substantial and should not 
be underestimated. A further consideration concerns the relationship between VitalGuard and 
existing humanitarian technology infrastructure. The system is not intended to replace 
established tools such as UNHCR’s PRIMES registration system or WHO’s DHIS2 health 
information platform. Rather, it is designed to operate in the gaps—contexts where 
connectivity is absent, where existing systems cannot function, or where populations are 
excluded from institutional services entirely. The complementary rather than competitive 
positioning is important: VitalGuard may be most valuable precisely where no other digital 
tool is available, and least relevant where established infrastructure is functioning normally. It 
is also worth acknowledging the role of the European government design review in the 
context of the broader international development ecosystem. In this ecosystem, institutional 
decision-making is characterised by path dependence, risk aversion, and peer referencing. 
The fact that a European government agency engaged in substantive review of the system’s 
design—examining technical claims, ethical architecture, and policy alignment over a three-



week period—does not constitute an endorsement. However, it does represent the passage of 
an implicit credibility threshold: the technology was deemed sufficiently serious to warrant 
institutional attention. In an ecosystem where the primary barrier to adoption is often not 
technical inadequacy but institutional uncertainty, this signal has practical significance, 
though it should not be overstated.

5.5 Reproducibility and Validation Checklist
VitalGuard is intentionally designed to be inspectable without specialised tooling. A minimal 
reproducibility package should allow an independent reviewer to verify the core constraints 
claimed in this paper.

First, size verification. The distributed artefact should be measured as the literal sum of the 
offline files (HTML, JavaScript, CSS) required to run the system without a network 
connection. Reporting should clarify whether the measurement is raw file size, compressed 
archive size, or packaged application size, as these numbers can differ materially.

Second, offline verification. The system should be launched with network connectivity 
disabled (for example, airplane mode or a controlled firewall rule) to confirm that all 
functionality described as "offline" remains available and that no requests are attempted.

Third, no-exfiltration verification. The source code can be audited by searching for outbound 
network APIs such as fetch, XMLHttpRequest, WebSocket, and sendBeacon, and by 
observing the browser network panel to confirm no outbound requests are made during 
typical usage.

Fourth, no-persistent-retention verification. The source code can be audited for writes to 
persistent storage APIs including localStorage, sessionStorage, IndexedDB, cookies, service 
worker caches, and file system APIs. Reviewers can also monitor storage panels during 
runtime to confirm that sensitive inputs do not persist beyond the session.

Fifth, algorithmic transparency. For each decision-support feature, the paper should specify 
the exact algorithmic pathway and parameter choices so that outputs can be reproduced 
deterministically under the same inputs.

Finally, performance reporting should be treated as empirical rather than asserted. Appendix 
A defines a timing protocol and representative input sizes. At the time of writing, field 
deployment remains pending, and claims should be read as design constraints and intended 
verification steps rather than proof of real-world impact.

6. Limitations, Risks, and Ethical Considerations
This section constitutes what we regard as the most important part of the paper. A system 
designed for deployment in humanitarian contexts—where decisions affect the safety and 
wellbeing of vulnerable populations—must be assessed not by what it can do, but by what it 
cannot do and what might go wrong. We organise this assessment into four categories: 
technical limitations, field deployment barriers, ethical risks, and future research directions.



6.1 Technical Limitations
VitalGuard’s 54 kB constraint, while ethically motivated, imposes genuine and non-trivial 
functional restrictions. First, the system cannot perform complex medical diagnosis. The 
Naïve Bayes classifier used for health screening is suitable for triage—identifying individuals 
who should be referred for professional assessment—but lacks the sophistication required for 
differential diagnosis. Any attempt to extend the system into diagnostic territory would be 
both technically inadequate and ethically irresponsible, as it would expose deploying 
organisations to medical liability without providing commensurate clinical benefit. Second, 
real-time image processing is beyond the system’s capacity. The 54 kB constraint precludes 
the inclusion of image decoding libraries; where visual information is relevant, the system 
can process only pre-extracted metadata (e.g., EXIF data, image dimensions) rather than 
pixel-level content. This limitation is significant for applications such as document 
verification, where image analysis might otherwise improve accuracy. Third, the system 
includes no generative AI capabilities. This is a deliberate exclusion rather than a technical 
shortcoming: generative models introduce hallucination risks that are unacceptable in 
humanitarian decision-making contexts. A system that fabricates plausible but false 
information about a refugee’s identity or medical condition could cause direct and 
measurable harm. Fourth, model updates require manual file replacement. The system has no 
mechanism for over-the-air updates, versioning, or automatic patching. This is a direct 
consequence of the offline-only architecture. While it eliminates the security risks associated 
with update mechanisms (a common attack vector), it creates a maintenance burden: field 
staff must physically deliver updated files, introducing delay and logistical complexity.

6.2 Field Deployment Barriers
Technology adoption in humanitarian settings is constrained less by technical capability than 
by institutional, social, and political factors. Three barriers merit specific attention. 
Institutional legal conservatism presents the most formidable obstacle. Even when a 
technology demonstrably works and is demonstrably safe, humanitarian organisations may 
decline to adopt it because the perceived risk of being the first adopter outweighs the 
expected benefit. This is a rational response to an asymmetric incentive structure: the 
institutional cost of a technology failure (reputational damage, regulatory sanction, litigation) 
far exceeds the institutional reward of a technology success (incremental improvement in 
service delivery). Addressing this barrier requires not better technology but better risk-
sharing mechanisms—for example, pilot programmes in which legal liability is jointly 
designed between the technology provider and the deploying institution. Staff technology 
acceptance is a second, related challenge. Many humanitarian field workers operate in 
environments where digital technology is unreliable or has previously been associated with 
surveillance and control. Building trust in a new technological tool requires sustained 
engagement, training, and—critically—evidence that the tool has been co-designed with 
input from the communities it is intended to serve. VitalGuard’s deployment strategy must 
include participatory design processes rather than simply delivering a finished product. Data 
localisation and contextual adaptation present a third barrier. Algorithms trained or 
configured for one refugee population may perform poorly when applied to another. 
Linguistic patterns, naming conventions, health profiles, and cultural contexts vary 



substantially across displacement situations. VitalGuard’s modular architecture is designed to 
facilitate local adaptation, but the adaptation process itself requires technical capacity that 
may not be available in all deployment settings.

6.3 Ethical Risks and Potential for Misuse
We identify four categories of ethical risk that must be confronted directly. Surveillance 
appropriation. Although VitalGuard is designed as a surveillance-resistant technology, the 
environment in which it is deployed may not share this property. A camp administrator, 
government agency, or armed group could potentially repurpose the system’s identity 
matching functionality for monitoring or control purposes. The technical architecture resists 
this—no data is transmitted, no logs are kept—but the social context of deployment can 
undermine technical safeguards. Mitigation requires mandatory institutional ethical review 
prior to any deployment, with veto authority granted to community representatives. 
Developer bias. Even a system implemented in transparent vanilla JavaScript embodies the 
biases of its designers. Algorithm selection, feature weighting, threshold calibration, and 
interface design all reflect the worldview and assumptions of the development team. If that 
team lacks diversity—in geography, culture, gender, disability status, or lived experience of 
displacement—the system will inevitably encode blind spots that may disadvantage specific 
populations. Open-source publication is a necessary but insufficient mitigation; active 
community oversight and ongoing audit by affected populations are essential. The illusion of 
technological self-reliance. There is a risk that the simplicity and offline capability of 
VitalGuard may encourage the misconception that technology alone can solve humanitarian 
challenges. A 54 kB file does not constitute self-reliance. Effective deployment requires 
training infrastructure, maintenance capacity, legal support, ethical oversight, and—most 
fundamentally—institutional commitment to the welfare of the populations served. 
Technology is a component of a support ecosystem, not a substitute for one. Asymmetric 
design authority. VitalGuard is currently authored outside the displacement-affected 
communities it aims to serve. The risk of imposing externally designed systems on 
communities without meaningful agency in the design process is real and cannot be fully 
mitigated by good intentions alone. The project’s long-term trajectory must include a transfer 
of design authority through partnerships with local technical actors and community 
governance structures. This transfer is aspirational at present and represents a research 
challenge as much as a technical one.

A further ethical consideration concerns the epistemological assumptions embedded in the 
system’s design. The ten principles presented in Section 3, while grounded in international 
legal frameworks, reflect a particular normative tradition—one rooted in Western liberal 
conceptions of privacy, autonomy, and individual rights. In some deployment contexts, 
community-level decision-making, collective data governance, or alternative conceptions of 
privacy may be more appropriate. The system’s framework should therefore be understood as 
a starting point for dialogue with affected communities rather than a universally applicable 
template. Future iterations must incorporate mechanisms for community-level ethical review 
that go beyond Western institutional ethics protocols.



Finally, we note the paradox of transparency itself. VitalGuard’s small codebase is fully 
auditable, which we present as a feature. Yet auditability presumes auditors: individuals with 
both the technical competence and the institutional authority to conduct meaningful review. 
In many humanitarian settings, such auditors may not be available, and the theoretical 
transparency of the system may not translate into practical accountability. Addressing this 
gap requires investment in local technical capacity—an investment that goes well beyond the 
scope of any single technology project.

6.4 Future Research Directions
Four directions for future work emerge from the analysis above. First, a controlled pilot 
deployment of 3–6 months in an actual refugee setting, conducted in partnership with 
academic institutions and humanitarian organisations, is essential to test the system’s 
assumptions against field reality. Second, the development of a community self-reliance 
model—a structured pathway for transferring technical ownership from external developers 
to local communities—requires interdisciplinary research combining technology transfer 
theory, participatory design, and development studies. Third, the system’s applicability 
beyond refugee contexts—to human rights activists, journalists, persons with disabilities, and 
other populations operating under surveillance—warrants systematic exploration. Fourth, 
policy engagement with international organisations (United Nations agencies, the 
International Committee of the Red Cross, the World Health Organisation) is needed to 
assess whether and how constraint-based AI design might be incorporated into institutional 
technology adoption frameworks.

6.5 Operational Security and Deployment Guidance
VitalGuard should be treated as decision support rather than a substitute for medical, legal, or 
protection expertise. In particular, outputs that relate to identity matching, health triage, or 
risk scoring can create harm if interpreted as authoritative.

From an operational security perspective, the strongest protection offered by VitalGuard is 
the absence of server-side custody. This reduces mass-surveillance and bulk compromise 
risk, but it does not protect against device seizure, malware, coercion, or screen capture. 
Deployments in high-risk settings should therefore assume that local compromise is possible 
and should avoid entering data that would be catastrophic if exposed.

Where organisations distribute VitalGuard, the distribution channel itself becomes part of the 
threat model. Offline distribution should use integrity-checked media (for example, signed 
packages or checksums) to reduce the risk of tampered builds. The codebase should remain 
readable and unminified to support inspection by local partners.

Finally, governance should be explicit about responsibility. If an organisation deploys 
VitalGuard, it should publish a short, plain-language statement describing what the system 
does, what it does not do, and what data is and is not retained. In humanitarian contexts, such 
clarity is often as important as technical correctness.



7. Conclusion
This paper has presented VitalGuard, an ultra-lightweight offline AI system constrained to 54 
kB, and has argued that constraint-based ethical design is a viable and necessary orientation 
for humanitarian AI. In contexts characterised by surveillance risk, resource scarcity, and 
acute legal liability, the driving question should not be "What can this system do?" but "What 
may it ethically be permitted to do, and under what institutional conditions?"

The ten design principles articulated here are not individually novel; many align with existing 
AI ethics guidelines. The distinctive contribution is the attempt to operationalise them 
simultaneously within a single auditable artefact, and to show how ethical commitments can 
be translated into enforceable architectural constraints. We motivate the 54 kB boundary as 
an auditable description-length proxy, and we characterise privacy primarily through non-
collection, non-retention, and no-exfiltration constraints under an explicit threat model. 
Where stronger privacy guarantees are required for future extensions, formal mechanisms 
such as differential privacy remain relevant, but they are not claimed without explicit 
implementation.

The preliminary validation reported here—an external public-sector design review and early-
stage academic engagement—should be interpreted narrowly. It suggests that the design 
framing is coherent and that core constraints are technically inspectable, but it does not 
substitute for field trials or impact evaluation. Real-world usefulness will depend on 
participatory deployment, governance arrangements, distribution channels, and the safety 
practices of organisations and communities.

Ultimately, VitalGuard is not a finished solution. It is an exploration pathway that treats 
minimalism as accountability and seeks a pragmatic middle ground between high-capability 
cloud AI and low-trust toolchains that expose vulnerable populations to extraction. We hope 
the work prompts further research into auditable, offline-first, community-sovereign AI 
systems that can be responsibly deployed where the stakes are highest.
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Data and Code Availability
VitalGuard is intended as an auditable software artefact. Public project documentation and 
offline demos are hosted at https://mcorpai.org/. A public repository containing the project 
site source and accompanying materials is available at 
https://github.com/henrymorgan10/mcorpai-org. The specific 54 kB release bundle 
referenced in this paper is distributed as a single-file offline artefact; a tamper-evident 
checksum and archival copy can be provided upon request to support independent review. 



Because this paper does not report empirical user data or field trials, no personal data or 
participant datasets are associated with this release.

If future versions incorporate quantitative evaluations or field deployments, the project will 
provide a data-governance plan covering informed consent, minimisation, retention, access 
control, incident response, and community oversight, consistent with GDPR-aligned 
humanitarian data responsibility guidance.
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Appendix A. Benchmarking and Measurement Protocol
This appendix specifies a minimal protocol for reproducible timing and memory 
measurements of VitalGuard. The goal is to prevent performance claims from becoming 
marketing statements and to enable independent verification.

Device classes. Report results on at least two classes: (i) a low-end Android device with 2–4 
GB RAM and a mid-range ARM CPU, and (ii) a commodity laptop with an x86 CPU. Report 
operating system version and browser engine (Chromium, WebKit, or Gecko) with exact 
version.

Offline condition. Confirm network is disabled during measurement. Record whether airplane 
mode, firewall rules, or an isolated LAN was used.

Input sizes. For Levenshtein matching, report timings for name strings of length 10, 20, 40, 
and 80 characters. For naive Bayes, report training sizes N = 50, 200, 1,000 and feature 
dimensions F = 10, 50, 200. These ranges cover the intended humanitarian "small data" 
regime.

Measurement method. Use the browser high-resolution timer (performance.now()) for wall-
clock timing. Run each case for 100 iterations after a warm-up phase of 20 iterations. Report 
median, 95th percentile, and maximum.

Memory reporting. Where possible, report peak heap usage using browser performance tools 
or OS-level process monitoring. State limitations if the platform does not expose reliable 
memory measures.

Reporting template. Each reported metric should include device, OS, browser, input size 
parameters, and whether code was minified. If optimisation changes are made (for example 
space-optimised Levenshtein), the implementation variant must be identified explicitly.

Appendix B. Algorithmic Specifications and Pseudocode
This appendix summarises the core algorithms used by VitalGuard to support independent re-
implementation.

Naive Bayes (multinomial) for lightweight classification. Inputs are a feature vector x = 
(x1,...,xF) and a set of class labels C. Training estimates class priors P(c) and likelihoods P(fi|
c) with Laplace smoothing. Inference selects argmax_c log P(c) + sum_i x_i log P(fi|c).

Levenshtein distance for approximate string matching. The standard dynamic programming 
matrix D of size (m+1) x (n+1) is initialised with D[i,0]=i and D[0,j]=j. Recurrence: 
D[i,j]=min(D[i-1,j]+1, D[i,j-1]+1, D[i-1,j-1]+cost), where cost is 0 if characters match and 1 
otherwise.

Simple rule-based scoring. Where VitalGuard uses threshold rules (for example symptom 
triage), the exact thresholds and feature definitions should be included in a configuration 
block within the source code so that local partners can review and adjust them.

Pseudocode 1. Levenshtein distance.
function levenshtein(a, b):



    m = len(a); n = len(b)
    create array D of size (m+1) x (n+1)
    for i from 0 to m: D[i,0] = i
    for j from 0 to n: D[0,j] = j
    for i from 1 to m:
        for j from 1 to n:
            cost = 0 if a[i-1] == b[j-1] else 1
            D[i,j] = min(D[i-1,j] + 1,
                         D[i,j-1] + 1,
                         D[i-1,j-1] + cost)
    return D[m,n]
Pseudocode 2. Multinomial naive Bayes inference.
function predict_nb(x, priors, likelihoods):
    best_c = None; best_score = -infinity
    for each class c:
        score = log(priors[c])
        for each feature i:
            score += x[i] * log(likelihoods[c][i])
        if score > best_score: best_score = score; best_c = c
    return best_c

Appendix C. Governance and Deployment Checklist
VitalGuard is designed to minimise harm through technical constraints, but deployment risk 
cannot be eliminated by engineering alone. This appendix provides a governance checklist 
suitable for NGOs, local partners, and public institutions.

Clarify purpose and boundaries. Publish a plain-language statement of intended use, non-
intended use, and known limitations. Avoid framing the system as medical diagnosis, legal 
adjudication, or identity proof.

Consent and agency. Ensure that users understand that the tool runs locally, what inputs are 
required, and that they may refuse use without penalty. In humanitarian settings, consent is 
often compromised by power asymmetries; this must be acknowledged.

Safeguard against coercion. Establish procedures for responding to requests from authorities 
or armed groups that seek to use the tool for surveillance or profiling. The organisation 
should have a documented refusal policy.

Integrity of distribution. Distribute verifiable builds, maintain checksums, and document the 
provenance of any modified versions. Avoid bundling with third-party analytics or ad 
frameworks.

Local adaptation. If local partners adjust thresholds or rules, require documentation of the 
change, rationale, and a basic harm review. Transparency is more important than 
optimisation.

Accountability. Assign a responsible owner for incident response, feedback intake, and 
periodic review. Even a "no data" tool can cause harm through decision influence.



Appendix D. Extended Principle-to-Constraint Mapping
This appendix expands the mapping between ethical principles and concrete constraints to 
support reviewers who prefer narrative reasoning over checklists. The mapping is written to 
be auditable: each principle is paired with one or more observable implementation constraints 
and with an explicit failure mode.

Principle 1, protect dignity and agency, is enforced by keeping the system local, optional, and 
non-mandatory. Failure mode: a deployment that makes tool usage a prerequisite for aid 
access converts decision support into coercion.

Principle 2, function in infrastructure absence, is enforced by eliminating runtime 
dependencies on networks, remote APIs, and third-party libraries. Failure mode: a "mostly 
offline" design that silently fails when connectivity drops can create dangerous false 
confidence.

Principle 3, resist surveillance by design, is enforced by no-exfiltration constraints and by 
refusing server-side logging. Failure mode: adding analytics, remote debugging, or silent 
telemetry—even for benign monitoring—creates a data exhaust that can be repurposed.

Principle 4, be understandable and contestable, is enforced by the auditable boundary and 
deterministic algorithmic core. Failure mode: integrating opaque model weights or remote 
inference undermines the ability of local partners to challenge outputs.

Principle 5, minimise dependency and lock-in, is enforced by plain web standards (HTML 
and JavaScript) and by the absence of proprietary SDKs. Failure mode: depending on a 
vendor runtime can transfer governance power away from the community.

Principle 6, minimise legal liability, is enforced by avoiding organisational custody of 
personal data and by keeping processing session-bounded. Failure mode: storing identifiers 
locally for convenience can still create meaningful harm if devices are seized.

Principle 7, fairness under scarcity, is enforced by restricting features to inputs that are 
realistically available and by avoiding proxy variables that encode protected characteristics. 
Failure mode: using convenience proxies (for example location, device identifiers, or 
language) can reproduce discriminatory patterns.

Principle 8, fail safely, is enforced by conservative defaults and by presenting outputs as 
suggestions with uncertainty. Failure mode: presenting scores without context encourages 
over-trust.

Principle 9, enable local adaptation, is enforced by keeping thresholds and rule parameters 
explicit in code and by encouraging documentation of changes. Failure mode: hidden 
parameters and minified code prevent local governance.

Principle 10, be auditable by one person, is enforced by the 54 kB constraint, readable 
formatting, and removal of external dependencies. Failure mode: code growth beyond the 
audit boundary recreates the opacity of large systems.



Across these principles, the central argument is that ethical claims must be testable. 
VitalGuard treats size, offline operation, and the absence of exfiltration and persistence as 
verifiable constraints, so that disagreement does not depend on trusting the author’s intent.
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